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ABSTRACT: 
Understanding the effect of vanadate (V(V)) on the well-studied filamentous fungus, Phycomyces blakesleeanus, is of great 
importance for establishing the mechanisms of vanadium internalisation and metabolism. Although P. blakesleeanus is not a soil 
fungus, its short life cycle and evolutionary basal position in the fungal kingdom makes it an excellent model for studying the 
interactions of fungi with vanadate and other metals as well as the improvement of their use in vanadium recovery (bioaccumulation) 
and the remediation of contaminated soils. In this study, we investigated the effects of vanadate at three concentrations (1 mM, 
5 mM, and 10 mM) on both enzymatic and non-enzymatic components of the antioxidant system of mycelia at different growth 
stages. The production of ROS was highest in the exponential phase, but its reducing capacity was maintained, probably due to 
high levels of non-enzymatic antioxidants such as phenols and glutathione. In the stationary phase, while the reducing capacity of 
the mycelia was somewhat impaired by vanadate (V(V)), it recovered due to the action of the glutathione system and the activation 
of peroxidases. In the late exponential/early stationary phase, no significant activation of the antioxidative systems was observed, 
and the reducing capacity was impaired. When we consider the effects of V(V) on mycelial growth, this was the only phase with 
reduced viability, while the exponential and stationary phases were unaffected, if not stimulated. This study provides insight into the 
tolerance of P. blakesleeanus mycelia to vanadate, even at concentrations as high as 10 mM, making this fungus a good candidate 
for V(V) bioaccumulation.
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INTRODUCTION

As an important part of the ecosystem, fungi are involved in various environ-
mental processes directly related to metals (Xu et al. 2019). Many metals serve 
as essential micronutrients for fungi at low concentrations, however, at high 
concentrations, such metals can be toxic or even lethal (Das et al. 2009). For 
one such transition metal, vanadium (V), widely known as a trace contaminant 
in coal and oil, but not yet recognised as a problematic environmental pollut-
ant (Schlesinger et al. 2017), fungi are the main pathway for its entry into 
the ecosystem (Anke et al. 2005). Fungi generally exhibit a good tolerance to 
it and are capable of growing in environments with vanadate concentrations 
in the millimolar range (Ceci et al. 2012; Xu et al. 2019). In addition to toler-
ance, many fungi can also accumulate or mobilise vanadium from minerals, 
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indicating their potential use in the recovery and remediation of vanadium 
(Xu et al. 2019). The effects of vanadium in biological systems are diverse and 
depend primarily on the oxidation state, but also on the chemical form, dose, 
and duration of exposure (Aureliano 2016 and the references therein). In the 
last few decades, vanadium has attracted the attention of researchers as a po-
tential therapeutic agent, mainly due to its insulin-mimetic effects (Treviño 
& Diaz 2020), linked to its ability to form complexes and exchange chelators 
and ligands with the environment (Scior et al. 2016). These complexes act as 
vehicles for therapeutically active “free“ vanadium, but may also exert toxic 
effects (Scior et al. 2016). Metabolic transformations of vanadium in those 
organisms which adopt it, such as fungi, might provide a promising way to 
obtain V complexes with desirable pharmaco-kinetic properties. 

Vanadate can induce the formation of free radicals either via a Fenton-like 
or a Haber–Weiss reaction (Valko et al. 2005; Soriano-Agueda et al. 2016). 
In addition, it can also influence the phosphorylation and dephosphorylation 
of proteins, regulate the activity of numerous enzymes, and trigger various 
signalling pathways (Scior et al. 2005). Normally, reactive oxygen species 
– (ROS) are part of the physiological processes in fungi and are involved in 
germination, development, intercellular communication, differentiation, etc. 
(Aguirre et al. 2005; Gessler et al. 2007). However, increased radical con-
centrations and the induction of oxidative stress by various stimuli, such as 
high metal concentrations, affect antioxidant defence systems and may lead to 
various changes in growth, metabolism, or the production of bioactive com-
pounds (Bai et al. 2003; Belozerskaya & Gessler 2007). The extent of metal 
toxicity depends on the fungal species, the metal concentration in the soil, 
the duration of exposure, and the properties of the metal such as solubility, 
absorbability, transport, and chemical reactivity (Priyadarshini et al. 2021; 
Robinson et al. 2021). Oxidative stress is often associated with transition met-
als because they can easily change their oxidation state. After entering the 
cell, vanadium ions undergo oxidation-reduction processes involving various 
reducing agents and enzymes, such as glutathione reductase, ascorbate, nico-
tinamide adenine dinucleotide phosphate (NADPH), thiols, and others (Sori-
ano-Agueda et al. 2016).

The objective of this study was to investigate the effects of increasing con-
centrations of vanadium in its oxidation state 5, vanadate (V(V)), on Phycomy-
ces blakesleeanus mycelia at different growth stages. Phycomyces blakesleeanus 
is a well-studied filamentous fungus commonly used for physiological studies 
(Galland et al. 2007; Živanović et al. 2018, 2023). Vanadium can enter the 
mycelia in both V(V) and V(IV) form, which are its most common oxidative 
states (Soares et al. 2008). The study of the effects of vanadate on the enzy-
matic and non-enzymatic defence systems in this fungus is a step towards 
gaining a better understanding of the response of fungi to exposure to a com-
plex transient metal such as vanadium. 

MATERIALS AND METHODS

Growth conditions and preparation of the mycelia for analysis. All the ex-
periments were performed using the mycelia of the wild-type strain Phyco-
myces blakesleeanus (NRRL 1555(-)), originally from the Northern Regional 
Research Laboratory (Peoria, Il., USA; Bergman et al. 1973). The vegetative 
spores were kept at -20°C at a concentration of 107, and heat-shock activat-
ed (48–50°C, 15 min) immediately prior to inoculation. The activated spores 
were grown in modified minimal medium SIV (Sutter 1975) containing (in 
mM): 110 glucose, 13.1 L-asparagine, 36.7 KH2PO4, 2 MgSO4 × 7H2O, 0.376 
CaCl2, 36.7 KH2PO4, 2 MgSO4 × 7H2O, 0.376  CaCl2, and (in μM): 3 thia-
mine × HCl, 1 citric acid × H2O, 3.7 Fe(NO3)3 × 9H2O, 3.5 ZnSO4·× 7H2O, 1.8 
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MnSO4·× H2O, 0.2 CuSO4·× 5H2O, 0.2 NaMoO4·× 2H2O, pH 6.7, in Erlenmeyer 
flasks shaken on a digital orbital shaker at 120 rpm (Sea Star, Heathrow Sci-
entific, USA) at 22°C, under continuous white fluorescent light at an intensity 
of 10 W/m2 (Osram, Germany). The standard SIV medium has a pH of 4.8, 
and the vanadate stock solution has a pH of 10. To avoid the pH influence of 
V(V), the growth medium was adjusted to pH 6.7 with KOH, which is the pH 
of the medium containing 10 mM V(V). The stock solution of 200 mM so-
dium orthovanadate (Na3VO4) (Sigma-Aldrich, Taufkirchen, Germany), was 
prepared according to the method described by Gordon (1991). The growth 
curve was determined by vacuum filtration of 20 mL of mycelial suspension 
through pre-weighed filter paper every 4 h from 12 h to 68 h of growth, and 
the biomass was oven-dried for 24 h at 50°C. Glucose was determined from 
the supernatant using the 3,5-dinitrosalicylic acid method (Jain et al. 2020). 
Three time points were chosen for treatment with vanadate: 20 h (the early 
to mid-exponential phase), 36 h (the late exponential phase), and 56 h (the 
stationary phase). At the selected time points, the mycelia were collected by 
vacuum filtration, washed with sterilised distilled water and resuspended in 
fresh SIV medium containing 1 mM, 5 mM, or 10 mM V(V). After 1 h or 5 
h treatment, the mycelia were washed twice with 50 mM Na2EDTA pH 6.7 at 
4°C, and centrifuged for 7 min at 4300 × g. The control samples were exposed 
to the same set of steps as the treated ones, but without the addition of V(V). A 
portion of the mycelia was freeze-dried and used for the ABTS assay and total 
phenolic content, while fresh mycelia were used for the glutathione determi-
nation and enzymatic assays. All the samples were stored at -70°C until use.

Cell survival – “culturability”. At selected time points, 500 mg of fresh 
weight (FW) mycelia was transferred to 50 mL of fresh minimal medium con-
taining 1 mM, 5 mM, or 10 mM V(V) for 5 h. After treatment, the mycelia 
were washed with 50 mM Na2EDTA pH 6.7 and transferred to 50 mL of fresh 
minimal medium for another 12 h and then filtered through pre-weighed filter 
paper. The filtrate was oven-dried for 24 h. Cell survival or “culturability“ was 
monitored by the growth rate as a function of dry biomass weight (DW). The 
growth rate is expressed in mgDWmL-1 h-1.

Detection of intracellular ROS. ROS were determined using the dichloro-di-
hydro-fluorescein diacetate (DCFH-DA) method (Kalyanaraman et al. 
2012). DCFH-DA was dissolved in 96% ethanol and used at a final concentra-
tion of 20 µM. The mycelia were collected after treatment for 0.5 h, 1 h, or 5 
h and diluted with sterilised distilled water to OD750 ~ 0.5, washed twice and 
incubated with DCFH-DA in the dark for 1 h at room temperature. DCF flu-
orescence at ex/em 485/530 nm was measured using a Tecan Infinite M Nano 
microplate reader (Tecan Group Ltd, Männedorf, Switzerland) in clear bot-
tom black microplates. The results are presented as the ratio of fluorescence 
intensity of the treatment and control.

Radical scavenging activity, total phenolic content and total glutathione 
content. Freeze-dried mycelia (50 mg per sample) were used to determine the 
radical scavenging activity (ABTS assay) (Re et al. 1999) and total phenol-
ic content (Singleton & Rossi 1965) of the samples. The extraction solvents 
were prepared using 50% ethanol at a ratio of 1/8 w/v for the ABTS assay, and 
80% methanol at a ratio of 1/10 w/v for the total phenolic content. The sam-
ples were homogenised in half the solvent volume with 5 mm stainless steel 
beads (Qiagen, Germany) twice for 30 s at a frequency of 30 Hz on the Tissue 
Lyser (Qiagen, Germany), and the remaining buffer was then added. After a 
4-min extraction the samples were centrifuged at 16100 × g for 10 minutes at 
4°C, and the supernatants were immediately used for the tests. Ascorbic acid 
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was used as the standard (0.1–1 mM) for the ABTS assay, and the results were 
expressed as mmol ascorbic acid equivalents (AscE) per gramme dry weight 
(mmolAscE/gDW). The total phenolic content was determined spectrophoto-
metrically using the method proposed by Singleton & Rossi (1965). Gallic 
acid was used as the standard (0.1–2 mM) and the results were expressed as 
mmol gallic acid equivalents (GAE) per gramme dry weight (mmolGAE/gDW). 
For the total glutathione content (Gtot), 100 mg of FW mycelia was frozen in 
liquid N2 and homogenised on Tissue Lyzer as described above. Extraction 
was performed according to Matsumoto et al. (1996) and absorbance was 
measured every 2 minutes for 6 minutes at 405 nm. The concentration of total 
glutathione was determined from the standard curve and expressed in µg per 
gramme fresh weight (µg/gFW).

Enzyme assays. For the enzyme extraction, 200 mg of FW mycelia and 1 ml 
of 50 mM potassium phosphate buffer composed of KH2PO4 and K2HPO4, pH 
7.2 with/without 2 mM D-iso ascorbic acid sodium salt and 2 mM PMSF were 
used. Buffers with D-iso ascorbic acid and PMSF were used for the extraction 
of glutathione peroxidase (GPx) and glutathione reductase (GR), while buff-
ers without these components were used for the determination of pyrogallol/
guaiacol peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD). 
Frozen samples were homogenised as previously described, and the extraction 
was performed on ice for 15 min with continuous shaking. The extracts were 
stored at -70oC until use. The activities of GPx, GR, and POD were determined 
spectrophotometrically as U/mg protein, while CAT was determined polaro-
graphically. The total protein content was measured according to Bradford 
(1976) using bovine serum albumin as the standard. The activity of glutathione 
peroxidase (EC 1.11.1.9.) was measured according to Drotar et al. (1985) by 
observing the decrease in NADPH concentration at 340 nm. The glutathione 
reductase (EC 1.8.1.7) activity was determined as described by Smith et al. 
(1988) by monitoring the reduction of DTNB at 412 nm. The peroxidase (EC 
1.11.1.7) activity was determined by monitoring the increase in absorbance at 
420 nm, as a result of pyrogallol oxidation by H2O2 in the presence of perox-
idase (Maehly & Chance 1954). The catalase (EC 1.11.1.6) activity was de-
termined polarographically using the Clark-type oxygen electrode (Hansat-
ech Instruments Ltd, UK) according to the method proposed by del Río et 
al. (1977). SOD (EC 1.15.1.1) forms were separated by native PAGE according 
to Laemmli (1970), and the activity visualised in gel following Beaucham & 
Fridowich (1971).

Statistical data analysis. The results are presented as box and whisker plots 
including all points from at least two independent experiments (n = 4–6). 
Filamentous fungi are significantly inhomogeneous in terms of organelle 
distribution and cytoplasm density within the hyphae which, in addition to 
the presence of a cell wall, poses a challenge for successful cytoplasm isola-
tion. This is particularly pronounced in coenocytic (non-septate) fungi such 
as P. blakesleeanus. Another problem posed by the pooled analysis of sep-
arate experiments is the remarkable phenotypic plasticity and ability of P. 
blakesleeanus to adapt to almost imperceptible changes in the environmental 
conditions with alterations in physiology and morphology (Schinagl et al. 
2016). For this reason, the calculation of the enzymatic and non-enzymatic 
antioxidant activities of the P. blakesleeanus mycelia was adjusted. For each 
individual experimental series, the activities were expressed relative to the 
control mean for that series. The individual controls were also normalised to 
the control mean for the statistical calculations. This protocol was deemed 
valid as the response trend to vanadate treatment was similar across different 
experimental series despite large differences in absolute values. 
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For comparisons between the control and the treated samples (growth 
rate, radical scavenging activity, total phenolic content, total glutathione con-
tent and enzyme activity), a two-tailed non-parametric Mann-Whitney test 
was used (n = 4–6). Due to the short life cycle of P. blakesleeanus, treatments 
of different durations were compared to corresponding controls. For compar-
isons between the control samples at different growth stages (ROS, radical 
scavenging activity, and total phenolic content), the controls from both 1 h 
and 5 h were pooled. Given the higher number of samples (8–24), one-way 
ANOVA at a significance level of 0.05 was used. The statistical data analysis 
and graphs were generated in GraphPad Prism 6.01. 

RESULTS AND DISCUSSION

Growth rate dependence on vanadate dosage. The growth curve of P. 
blakesleeanus mycelia was obtained by determining DW every 4 hours (Fig. 
1A). The exponential phase lasted from 12 h to about 36/40 h of growth, fol-
lowed by a stationary phase. Three characteristic time points were selected 
for the vanadate exposure experiments: the mid-exponential phase (20 h), the 
late exponential/early stationary phase (36 h) and the stationary phase (56 h). 
To determine the toxic effects of V(V) on P. blakesleeanus, the mycelia were 
exposed to 1 mM, 5 mM, and 10 mM V(V), separately, for 5 h at each of the 
aforementioned time points, then washed and grown for a further 12 h in 
fresh vanadium-free medium. In the exponential and stationary phases V(V) 
exhibited no detrimental effects on mycelial survival, with only a slight in-
hibitory effect at the late exponential phase (Fig. 1B). Although there were no 
statistically significant differences between the control and the treatments at 
20h, the 10 mM treatment resulted in a significantly lower growth rate than 
that with 5 mM V(V), indicating possible hormetic effects of 5 mM V(V). Phy-
comyces blakesleeanus shows a high tolerance toward V(V) stress, and these 
results agree with those reported in Žižić et al. (2013), where V(V) up to 5 mM 
had a stimulatory effect on the mycelia in the exponential phase. The mycelia 
of different fungal species exhibit very different responses to V(V) treatment. 
Thus, treatments with up to 10 mM V(V) had little to no effect on the growth 
of basidiomycetes Bjerkandera adusta and Xerocomus badius, but inhibited 
the growth of Armillaria cepistipes and Amanita muscaria in particular (Xu et 
al. 2019). Notably, vanadium content in A. cepistipes and A. muscaria was sig-
nificantly higher than in B. adusta and X. badius (Xu et al. 2019), which could 

Fig. 1. A. The growth curve 
of Phycomyces blakesleeanus 
mycelia (n ≥ 6). Arrows denote 
the different growth phases 
selected for the experiments: 
mid-exponential (20 h), 
late exponential (36 h), and 
stationary (56 h) phase. B. The 
growth rate of Phycomyces 
blakesleeanus mycelia during 
12 h cultivation in V(V) free 
medium after exposure to 
increasing concentrations of 
vanadate for 5h in three selected 
growth phases, expressed as 
mgDW/mL*h (n = 7–8).
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Fig. 2. The production of ROS and changes in radical scavenging potential after V(V) treat-
ment. The left column (A) shows the production of ROS, while the right column (B) depicts 
the results of the ABTS test. First row (A and B) – the control values at selected time points 
were compared by one-way ANOVA followed by Tukey’s multiple comparison test. A1, A2, 
and A3 represent the intracellular ROS content at selected time points after treatment with 
1 mM, 5 mM, and 10 mM V(V) (n = 6). The changes in ROS content are depicted as the 
fluorescence ratio of the treatment and control. B1, B2, and B3 – the radical scavenging po-
tential (ABTS test) at selected time points after 1 h or 5 h of treatment with 1 mM, 5 mM, and 
10 mM V(V), depicted as the treatment and control ratio x 100 (n = 4). The control of each 
group was compared to treatment using the Mann-Witney rank sum test. The x - axes of A1 
and A2, and B1 and B2, correspond to the x - axes of A3 and B3, respectively.
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explain the higher toxic effect. Currently, although we do not know the extent 
of vanadate uptake by P. blakesleeanus, it is unlikely to reach the exceptionally 
5% of dry weight as in A. muscaria. In Saccharomyces cerevisiae, 5 mM V(V) 
caused growth arrest, but 1 mM had no effect (Willsky et al. 1984). As far as 
the authors are aware, no research has been conducted on the mechanisms of 
the stimulatory effects of vanadate on the growth of fungi, but studies have 
been carried out on plants with the ability to accumulate this metal. The stim-
ulatory effect of vanadium on the growth of Chinese cabbage Brassica rapa 
was reported by Tian et al. (2014), and the authors suggested enhanced growth 
as the mechanism for the dilution of metals within cells. Similar effects were 
observed in pepper plants, where V(V) up to a certain concentration stimulat-
ed an increase in plant height, stem diameter, the number of leaves and floral 
buds, the root volume, and the fresh and dry biomass, through an increase in 
free amino acids and sugars in the cytoplasm (García-Jiménez et al. 2018). 
Some fungi, especially those of the genus Amanita are known to be vanadium 
bioaccumulators (Rehder 2015).

The accumulation of ROS and polyphenols is related to the developmental 
stage. The effects of vanadium are related to the vanadate-phosphate analogy, 
and to its involvement (IV and V) in both the generation and annihilation of 
ROS (Rehder 2013). The level of intracellular ROS after treatment with V(V) 
shows an increase in intracellular H2O2 content. In untreated P. blakesleeanus 

Fig. 3. Phenolic content in the mycelia of Phycomyces blakesleeanus in the controls and after 
1 h and 5 h treatments with 1 mM, 5 mM, and 10 mM V(V), determined as mmolGAE/
gDW. A. The phenolic content of the control in selected growth phases compared by one-way 
ANOVA followed by Tukey’s multiple comparison test (n = 10). B, C, and D – the phenolic 
content of the mycelia after 1 h and 5 h treatments with 1 mM, 5 mM, and 10 mM V(V) at 
selected growth phases, depicted as the treatment and control ratio x 100. The control of each 
group was compared to treatment using the Mann-Witney rank sum test (n = 4–6).
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mycelia, the ROS content rose in the stationary phase (Fig. 2A), which is ex-
pected for aging cultures. Laun et al. (2001) showed that there is an accumu-
lation of ROS in aging mother cells of S. cerevisiae before apoptosis, while in 
some filamentous fungi, such as Penicillium chrysogenum, there was no accu-
mulation of ROS during the stationary growth phase (Sámi et al. 2003). 

De Castro et al. (2013) indicated that oxidative stress may play a role in 
the ageing of P. blakesleeanus, which is consistent with the decrease in the rad-
ical scavenging potential of the mycelia during the stationary phase (Fig. 2B). 
The highest ROS levels were caused by 10 mM V(V) in the mid-exponential 
mycelia (Fig. 2A1), while in the 36 h old mycelia they doubled in the first hour 
of the treatment, but returned to normal with prolonged incubation (Fig. 2A2). 
In the stationary phase mycelia, the increase in ROS levels is barely noticeable 
(Fig. 2A3). This could be due to the reduced permeability of the cell wall and 
membrane in ageing mycelia (Sousa-Lopes et al. 2004) and reduced metabolic 
activity. In addition, the basal levels of ROS were elevated in this growth stage 
(Fig. 2A). V(V) induced a decrease in the radical scavenging potential in 36 h 
and 56 h old mycelia after 1 h of treatment (Fig. 2B2, B3), while recovery was 
observed after 5 h of treatment, indicating some kind of adaptation. Such a rapid 
adaptation may explain the lack of any significant effect on the mycelial growth 
(Fig. 1B). Since the changes in the antioxidative system in this study (both enzy-
matic and non-enzymatic) were not extensive enough to explain the unaffected 
growth, the adaptation mechanism could be related to V(V) reduction and in-
ternalisation, similar to Ganoderma lucidum, where the accumulation of Se and 
simultaneous avoidance of selenite toxicity relies primarily on the expression of 
transporters with different kinetic properties (Xu et al. 2024).

Polyphenols are known to be strong antioxidants, therefore the total 
phenolic content was determined. The highest content of gallic acid equiva-
lents was found in the mid-exponential phase, with a marked decrease at 36 
h and 56 h (Fig. 3A). Phycomyces blakesleeanus produces exceptionally high 
amounts of gallic and protocatechuic acids, especially in the sporangiophores, 
but the mycelia are also rich in these compounds (Weinkove et al. 1998). This 
result differs from that of de Castro et al. (2013), but it can be attributed to 
different growth conditions, foremost the presence or absence of light, which 
has a marked effect on the accumulation of gallic and protocatechuic acids 
(Barrero et al. 1996). Significant changes in the phenolic content as a result 
of V(V) treatment were noted in 20 h old mycelia, where the phenolic content 
decreased after 1 h of treatment for all the applied concentrations (Fig. 3B). 
Phenolic substances can be directly involved in both redox and complexation 
reactions with V(V) and V(IV), thus buffering the toxicity of vanadate (Ga-
rau et al. 2015). Redox reactions are more pronounced at lower pH values such 
as those in the vacuoles, where the hydroxybenzoic acids of P. blakesleeanus 
are preferentially located (Weinkove et al. 1998). Micro-XRF chemical im-
aging showed that the predominant intracellular localisation of vanadium in 
P. blakesleeanus is probably the vacuole (Žižić et al. 2015). In the exponential 
phase mycelia treated with 1 mM and 5 mM V(V) for 5 h showed an increase 
in phenolic content compared to the control (Fig. 3B). This may be due to 
stress stimulating carbon fluxes into the secondary metabolic pathways, in-
ducing a shift of available resources to the synthesis of secondary products, 
such as phenolic compounds (Lattanzio 2013). Stressful conditions such as 
temperature stress (Fink-Boots et al.1999), and treatments with paraquat and 
H2O2 increase the concentration of phenolics in cultures of basidiomycetes 
Trametes versicolor and Abortiporus biennis (Jaszek et al. 2006). 

The response of antioxidant enzymes to vanadate. The accumulation of ROS 
leads to changes in the activities of antioxidative enzymes such as CAT, SOD, 
POD, and GPx. In this study, no changes were noted in CAT and SOD activi-
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ties as a result of V(V) incubation, but interestingly, the stationary phase my-
celia expressed an additional form of Mn SOD, which was also unaffected by 
V(V) (Fig. S1). De Castro et al. (2013) showed that CAT exists in two forms 
in P. blakesleeanus, a constitutive form and a form inducible by H2O2. Their 
results indicate that the constitutive form is inhibited by H2O2 after short 
treatments, while prolonged exposure leads to the activation of the inducible 
form, but only after treatment with a lower concentration of H2O2. Loss of 
CAT activity in S. cerevisiae had no effect on H2O2 sensitivity (Izawa et al. 
1996; Grant et al. 1998), suggesting that other enzymes such as peroxidases 
can remove H2O2 (Zadrąg-Tęcza et al. 2018). In line with this, GPx activity 
increased with prolonged V(V) incubation in 20 h and 56 h old mycelia (Fig. 
4A1, A3). In addition, POD activity increased in 56 h old mycelia treated with 
10 mM V(V) for 5 h (Fig. 4B3). 

Glutathione is one of the major antioxidants in fungi which reacts 
non-enzymatically with various reactive oxygen species (Pócsi et al. 2004). 

Fig. 4. The activities of GPx (A) and POD (B) in the mycelia of Phycomyces blakesleeanus after 
1 h and 5 h treatments with 1 mM, 5 mM, and 10 mM V(V) at selected growth phases, deter-
mined as U/mg protein and depicted as the treatment and control ratio × 100 (n = 3–6). The 
control of each group was compared to treatment using the Mann-Witney rank sum test. The 
x - axes of A1 and A2, and B1 and B2, correspond to the x - axes of A3 and B3, respectively.
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In addition, V(V) compounds undergo rapid reduction under physiological 
conditions in the presence of thiols such as glutathione or cysteine (Crans et 
al. 2010). Thiol-containing ligands also form stable complexes with V(V), and 
GSH-derived phytochelatins prevent the progression of cell damage caused by 
heavy metals by chelating and sequestering the metal ions (Pócsi et al. 2004; 
Crans et al. 2010). The content of total glutathione (Gtot) decreases with the 
depletion of both reduced (GSH) and oxidised (GSSG) glutathione. Its concen-
tration in S. cerevisiae varies between 1 and 10 mM or even higher (Herrero 
et al. 2008), and under physiological conditions the GSH concentration can be 
10 to 100 times higher than that of GSSG (Le Moan et al. 2006), so it is more 
likely that the decrease in total glutathione concentration is due to a lack of 
GSH (Kobayashi et al. 2002; Pócsi et al. 2004). In the 20 h old mycelia of P. 
blakesleeanus, Gtot decreased after prolonged exposure to V(V) (Fig. 5A1). At 
the same time, the activity of the peroxide-eliminating GPx, which catalyses 

Fig. 5. Gtot content determined as mg/gFW (A), and GR activity determined as U/mg protein 
(B) in the mycelia of Phycomyces blakesleeanus after 1 h and 5 h treatments with 1 mM, 
5 mM, and 10 mM V(V) at selected growth phases, depicted as the treatment and control 
ratio × 100 (n = 5–6). The control of each group was compared to treatment using the 
Mann-Witney rank sum test. The x - axes of A1 and A2, and B1 and B2, correspond to the 
x - axes of A3 and B3, respectively.
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the redox reaction between GSH and H2O2 and produces GSSG and H2O, in-
creased (Fig. 4A1). This led to an increase in GSSG, which in turn increased 
the activity of GR (Fig. 5B1), a GSH-regenerating enzyme whose substrate is 
GSSG. In the stationary phase mycelia (56 h old) Gtot levels already decreased 
after 1 h of V(V) exposure (Fig. 5A3), which is reflected in the reduced radical 
scavenging potential (Fig. 2B3). As in the 20 h old mycelia, an increase in GPx 
and GR activity was detectable (Figs. 4A3 and 5B3), which resulted in the par-
tial recovery of Gtot levels (Fig. 5A3) after 5h of incubation. 

Overall, the production of ROS was highest in the exponential phase with 
10 mM V(V), but its reducing capacity was preserved, probably due to high 
levels of non-enzymatic antioxidants such as phenols and Gtot, which also act 
as chelating agents. The application of 1 mM V(V) led to an initial decrease in 
the antioxidative capacity of 20 h old mycelia and elevated ROS production. 
Although the ABTS test showed a slight decrease in the antioxidative capacity 
after 5h, ROS accumulation was notably lower after 1 and 5 h of V treatment, 
indicating the activation of antioxidative mechanisms. This may be linked to 
the slight increase in phenolics after 5 h of treatment, as well as the increase 
in GPx activity, and the decrease in Gtot which triggered GR activation. The 
elimination of ROS is probably partly mitigated by D-erythroascorbate as a 
significant antioxidant in P. blakesleeanus (Baroja-Mazo et al. 2005). After 
5 h in 20 h old mycelia the total antioxidative capacity together with the phe-
nolic content seemed to stabilise even at higher V(V) doses. 

In the stationary phase, the reducing capacity of the mycelia was impaired 
by V(V), but recovered through the action of the GSH system and the acti-
vation of peroxidases. In the late stationary phase, 10 mM V(V) led to a fast 
but short-lived ROS increase, while treatments with 1 mM and 5 mM V(V) 
resulted in a decrease in ROS. However, after 1 h and 5 h, the ROS levels re-
turned  to the control level, with only a slight increase observed with the 10 
mM treatment. Both antioxidative capacity and phenolic content remained at 
control levels. The role in ROS scavenging here lies with GPx and POD, which 
significantly increased in 5 mM and 10 mM treatments of mycelia in the sta-
tionary phase. The leading role of GPx is also reflected in the decreased Gtot 
content in the first hour of treatment, and the increased GR activity leading 
to Gtot restoration after 5 h of treatment. A contribution in this apparent ROS 
elimination could be made by D-erythroascorbate glycoside, which was not 
measured in our work, but could complement the enzymatic antioxidative ac-
tivity, as its concentration has been shown to be significantly increased in the 
stationary phase P. blakesleeanus mycelia (Baroja-Mazo et al. 2005).

The most sensitive developmental phase proved to be the late exponen-
tial/early stationary phase. Only here did V(V) have a mild inhibitory effect 
on growth rates. The reducing capacity of the mycelia was impaired and re-
mained so even after prolonged exposure to 10 mM V(V). No activation of 
peroxidases was observed, and there was even a slight inhibition of GR when 
10 mM V(V) was applied. During this phase, ROS production is lower than 
in the exponential phase mycelia, but notable after both 1 h and 5 h of treat-
ment, possibly due to lower metabolic activity upon transition to the station-
ary phase. However, the slight (albeit not statistically significant) decrease in 
Gtot content upon treatment with 10 mM V(V) treatment is probably due to 
the significant decrease in GR activity, while POD may contribute to H2O2 
elimination rather than GPx.

CONCLUSIONS

Vanadium enters the cells of P. blakesleeanus in both V and IV oxidation 
forms, and as such can be the subject of intracellular redox chemistry, which 
leads to the production of ROS. Different components of both enzymat-
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ic and non-enzymatic antioxidative response were shown to be involved in 
the defence against vanadium-induced ROS at different growth stages of P. 
blakesleeanus. Phenolics and glutathione peroxidase seem to be responsible 
for stress attenuation in the exponential growth phase. The activation of per-
oxidase in concert with GPx mitigates oxidative stress in the stationary phase. 
The mycelia are at their most sensitive during the transition from the expo-
nential to the stationary phase, with vanadate treatment leading to growth 
inhibition and the impaired reducing capacity of the mycelia.

This study has confirmed that P. blakesleeanus is a fungus with a high 
tolerance to V(V) and has revealed several mechanisms responsible for its 
resilience. Thus, P. blakesleeanus is a plausible candidate for V(V) bioaccu-
mulation and further investigation of the properties of vanadium forms and 
complexes obtained during its metabolism in this fungus is warranted. 
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Aktivacija antioksidativnog metabolizma micelije Phycomyces 
blakesleeanus u različitim fazama rasta

Jovana Lukičić, Tijana Cvetić Antić, Miroslav Živić, Kristina Atlagić, 
Dejan Mirčić, Marija Tanović i Marina Stanić

Razumevanje efekta vanadata (V(V)) na dobro istraženoj filamentoznoj gljivi, Phycomy-
ces blakesleeanus, značajno je za utvrđivanje mehanizama internalizacije i metabolizma 
vanadijuma. Iako P. blakesleeanus nije zemljišna gljiva, njen kratak životni ciklus i evolu-
ciona pozicija u bazi carstva gljiva čine je odličnim modelom za proučavanje interakcija 
gljiva sa vanadatom i drugim metalima, što može dovesti do poboljšanja primene gljiva u 
bioakumulaciji vanadijuma i remedijaciji kontaminiranih zemljišta. U ovom istraživanju 
smo proučavali efekte tri koncentracije vanadata (1 mM, 5 mM i 10 mM) na enzimske 
i neenzimske komponente antioksidativnog sistema micelije u različitim fazama rasta. 
Proizvodnja ROS (reaktivnih kiseoničnih vrsta) bila je najviša u eksponencijalnoj fazi, ali 
je redukujući kapacitet održan zahvaljujući visokom nivou neenzimskih antioksidanata 
kao što su fenoli i glutation. U stacionarnoj fazi, redukujući kapacitet micelije je donekle 
bio narušen prisustvom vanadata (V(V)), ali se oporavio zahvaljujući delovanju gluta-
tionskog sistema i aktivaciji peroksidaza. U kasnoj eksponencijalnoj/ranoj stacionarnoj 
fazi nije primećena značajna aktivacija antioksidativnih sistema, i redukujući kapacitet 
je bio narušen. Kada uzmemo u obzir efekte V(V) na rast micelije, ovo je bila jedina faza 
sa smanjenom vitalnošću, dok je stopa rasta u eksponencijalnoj i stacionarnoj fazi bila 
nepromenjena, ako ne i povećana. Ovo istraživanje pruža uvid u toleranciju micelije P. 
blakesleeanus na vanadat, čak i pri visokim koncentracijama, do 10 mM, što čini ovu gl-
jivu dobrim kandidatom za bioakumulaciju V(V).

Ključne reči: micelija, reaktivne kiseonične vrste, fenolna jedinjenja, antioksidativni en-
zimi, glutation
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