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ABSTRACT:	
Some essential oils (EOs) have exhibited high efficacy against Salmonella Typhimurium, suggesting that specific molecular structures 
within their constituents could inform the development of alternative antimicrobial agents, potentially addressing the rise of antibi-
otic resistance in this bacterium. Through feature permutation analysis on a dataset of 171 EO samples encompassing 682 molecular 
substructures, we identified ten key predictors of antibacterial activity against S. Typhimurium. These predictors were used to train a 
logistic regression-based machine learning model. Hydroxyl-substituted benzene rings characteristic of phenolic compounds - such 
as carvacrol, thymol and eugenol - emerged as strong predictors of antibacterial activity. In contrast, non-aromatic bicyclic struc-
tures present in monoterpenoids like alpha-pinene, beta-pinene and delta-3-carene were associated with a lack of efficacy against 
Salmonella. The molecular features identified align with existing research on the antimicrobial properties of phenolic compounds, 
thereby validating the use of machine learning approaches in guiding the discovery of naturally occurring antimicrobial agents.
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INTRODUCTION

Non-typhoidal Salmonella (NTS) infections, including those caused by Sal-
monella enterica serovar Typhimurium, result in approximately 93.8 million 
gastroenteritis cases and 155,000 deaths globally each year (Gong et al. 2022). 
The rise of antibiotic resistance in S. Typhimurium is driving research into 
alternative prevention and treatment methods (Wang et al. 2022). Plants have 
evolved sophisticated defence mechanisms against bacterial infections, in-
cluding physical barriers and the production of secondary metabolites which 
repel or destroy harmful organisms (Freeman & Beattie 2008). These com-
pounds have been extensively studied. From 2005 to 2024, there was a 13% 
average annual increase in published research on the antimicrobial activity 
(AA) of essential oils (EO) (Fig. 1). Advanced computational methods have 
enabled new insights from this growing body of research.

Yabuuchi et al. (2023) demonstrated the effectiveness of machine learning 
(ML) algorithms in identifying bioactive compounds in EOs effective against 
Staphylococcus aureus. The study identified several active compounds, includ-
ing perillyl alcohol, daphnoretin, and xanthohumol. Similarly, Artini et al. 
(2018) used a ML model to predict EO efficacy in disrupting the biofilms of 
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Pseudomonas aeruginosa, identifying estragole and phellandral as the key 
components for inhibition, while d-limonene and pulegone were linked to bi-
ofilm production. A recent study by (Barros de Menezes et al. 2022) showed 
the use of ML to identify bioactive EO compounds from Cuban plants with 
potential anti-protozoan properties.

Certain EOs are particularly effective against S. Typhimurium (Fitsiou 
et al. 2018; Ebani et al. 2019; Lin et al. 2021). Key components, such as cin-
namaldehyde and eugenol, have been shown through laboratory testing to 
contribute to EO efficacy (Purkait et al. 2020). However, there is limited data 
on which structural characteristics of EO constituents contribute to their ef-
fectiveness against S. Typhimurium. This is mainly due to the challenges of 
extracting, concentrating and testing the individual compounds present in 
EOs. To address this gap, we trained a logistic regression ML model to identify 
common molecular substructures in EOs with AA against S. Typhimurium 
(Morgan 1965). 

Despite the fact that numerous EOs exhibit strong antimicrobial effects in 
labs, their hydrophobic nature reduces effectiveness in real-world food envi-
ronments, especially with fats (Hyldgaard et al. 2012). Factors such as pH, 
temperature and contamination levels also affect their potency. This study 
identifies specific molecular substructures linked to the enhanced AA of EOs 
against S. Typhimurium, guiding future food preservation formulations. Our 
approach merges cheminformatics with machine learning, thus offering a new 
method to analyse decades of archived data. This novel strategy not only con-
firms existing findings, but also reveals fresh leads in the search for new anti-
microbial agents inspired by the potent natural antimicrobials found in EOs, 
emphasising the role of local flora in drug discovery.

This study aimed to identify the structural configurations of EO compo-
nents correlated with AA, excluding concentration effects.

Fig. 1. The publication 
trend from 2005 to 2024 for 
scientific articles focusing 
on the antimicrobial activity 
of essential oils, based on 
data retrieved from Scopus 
using “essential oils” and 
“antimicrobial activity” as the 
keywords. Accessed in January 
2025.
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MATERIALS AND METHODS

Acquiring data on the chemical composition and antimicrobial activity of 
essential oils. The computations were performed using Python 3.9 (https://
www.python.org/) on Jupyter Notebook (version 6.5.6). The chemical compo-
sition data for the EOs was obtained from an open-access database (https://
essentialoils.org/). The plant species considered were selected based on ex-
isting literature, representing common sources of EOs with botanical and 
pharmacological relevance. A literature review identified 87 EO samples with 
significant AA against S. Typhimurium, either through IC50 values below 100 
μg/mL or effectiveness in disc diffusion assays with 1 μg of EO or less. The 
remaining 84 samples showed little or no activity or were not reported. EOs 
can contain over 100 distinct compounds, many of which are present in trace 
amounts, increasing computational load and hindering meaningful insights. 
Thus, only those compounds with a quantitative significance above 10% were 
analysed. The dataset, including references to the corresponding studies, is 
available on Zenodo (https://doi.org/10.5281/zenodo.12684760).

Acquiring Morgan molecular fingerprints. The chemical names were con-
verted into SMILES strings (Simplified Molecular Input Line Entry System) 
(Weininger 1988). In this study, several open-access databases were used to 
obtain SMILES notations of EO compounds (Gaulton et al. 2012; Hastings 
et al. 2016; Kim et al. 2023). Morgan fingerprints represent molecules as binary 
vectors, indicating the presence or absence of molecular features (Morgan 
1965). SMILES strings were converted into 2048-bit binary vectors with a ra-
dius of two using the RDKit library (Linstrom & Mallard 2001; Landrum 
2024). A radius of two includes each atom’s immediate neighbours and their 
adjacent atoms. Columns of zeros, indicating absent substructures, were re-
moved to reduce dimensionality. The final dataset comprised 171 EO samples 
and 682 molecular descriptors, with a target column indicating AA against S. 
Typhimurium.

Machine Learning. Due to the dataset’s small size (<200 observations), a reg-
ularised logistic regression model was chosen to avoid overfitting (Araújo et 
al. 2023; Dudek et al. 2024). An L1 penalty with SAGA solver, with a regular-
isation parameter (C) set to 1.75 was used. The calibration curve was used to 
fine-tune C, targeting a slope close to 1 (accurate predictions) and an intercept 
close to 0 (unbiased predictions). Following Eertink et al. (2022), repeated 
stratified cross-validation (5 folds, 100 repeats) was employed to assess model 
performance with metrics such as accuracy, ROC AUC, sensitivity, specificity, 
precision, NPV, MCC and F1 score. Bootstrapping (1000 iterations) was ap-
plied to estimate coefficient stability and feature importance, as shown in Ta-
ble 1 and Figs. 2–5. Molecular substructures were visualised using the Chem 
package from RDKit (Landrum 2024).

Dataset Accuracy Sensitivity Specificity PPV NPV F1 Score MCC ROC AUC

Train 0.84 0.87 0.82 0.83 0.86 0.85 0.69 0.91

Test 0.81 0.83 0.80 0.81 0.82 0.82 0.63 0.88

Table 1. Train and test metrics of the final logistic regression model.

https://doi.org/10.5281/zenodo.12684760
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RESULTS AND DISCUSSION

Application of Machine Learning Algorithms. Features with permutation 
importance scores below 0.01 were removed to reduce overfitting, leaving ten 
key features. The regularisation parameter C was set to 1.75, achieving a cali-
bration slope of 1.03 and an intercept of -0.004, indicating minimal bias and 
accurate predictions. An accuracy of 0.81 was achieved, with sensitivity and 
specificity values of 0.82 and 0.79, demonstrating balanced classification (Ta-
ble 1). The dataset was compiled from different studies conducted under var-
ying conditions, introducing variability. Additionally, a known limitation in 
generating Morgan fingerprints is the occurrence of collisions, where different 
atomic environments produce the same hash value, introducing uncertainties 
into the model (Riniker & Landrum 2013). Nevertheless, the results are con-
sistent with similar studies. For example, Barros de Menezes et al. (2022) 
reported accuracies of 0.84 and 0.71 using self-organising maps and a random 
forest classifier for predicting the antiprotozoal activity of Eos.

Feature impact analysis. Partial dependence plots (PDPs) (Fig. 4) provided 
insights into the influence of each molecular feature on the model’s predic-
tions. Features like bit 1607 and bit 549 had the strongest positive and negative 
impacts, respectively, indicated by steep slopes. Feature 1607, found in carvac-
rol, eugenol and thymol, denotes a hydroxyl group on a benzene ring. Feature 
549, found in alpha-pinene, beta-pinene, and delta-3-carene, represents part 
of a bicyclic molecule (Tables 2 and 3).

Predictors of high antimicrobial potency. By bootstrapping over 1000 iter-
ations, we estimated the mean coefficients and their variability (Fig. 5). The 
hydroxyl group attached to a benzene ring exhibited the highest positive 
contribution with minimal variability (Table 2). The model’s selection of this 
feature as the most predictive of high AA can be explained by the fact that 
the outer membrane of Gram-negative bacteria contains lipopolysaccharides 
(LPS) which act as a barrier to polar substances. The hydrophobicity of the 
benzene ring can aid in disrupting lipid bilayers, facilitating membrane in-

Fig. 2. A calibration curve 
comparing predicted 
probabilities to true outcomes. 
The dashed line represents 
perfect calibration, while 
the blue line shows model 
performance across 20 bins 
of predicted probabilities. 
Calibration slope: 1.0324; 
calibration intercept: -0.0041.
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teraction and penetration (Li et al. 2017). Compounds with a balance of hy-
drophobicity and polarity are more effective at targeting bacterial cells. Once 
inside, these compounds form hydrogen bonds and interact with microbial 
proteins, disrupting their function (Dhakal et al. 2023; Liang et al. 2023; 
Sun & Shahrajabian 2023). 

Satureja thymbra L. and Thymus zygis L. exhibited high concentrations 
of thymol (66% and 51.65%, respectively), while Origanum syriacum L. and 
Origanum onites L. contained substantial carvacrol (88.3% and 75%). Both 
compounds confer AA via a hydroxyl-substituted benzene ring (Gören et al. 
2004; Peñalver et al. 2005; Mohamad et al. 2021). Pimenta dioica (L.) Merr. 
was the richest in eugenol (87%), with AA attributed to its functional substit-
uents on the benzene ring. Mimusops elengi L. demonstrated notable 2-pheny-
lethanol content (37.8%), with ethyl alcohol attached to a benzene ring. Tam-
arindus indica L. showed high furfural levels (72.4%), with the furan ring’s 
oxygen potentially contributing to the activity against S. Typhimurium. Men-
tha × citrata Ehrh., containing 66.2% linalyl acetate, was similarly reported as 
a potent inhibitor of S. Typhimurium. (Verma et al. 2016). The ester moiety in 
linalyl acetate increases lipophilicity, enhancing membrane penetration and 
thereby improving antimicrobial potency compared to its parent alcohol (lin-
alool) (Dorman & Deans 2000). Collectively, these plants show considerable 
promise as sources of bioactive antimicrobial compounds (Escalona-Ar-
ranz et al. 2010; Gündüz et al. 2010; Almuzaini 2023). Table 2 combined 
with the initial database (http://essentialoils.org/db) enable filtering for EOs 
rich in antimicrobial compounds linked in this study with high AA against S. 
Thyphimurium, supporting further research and formulation development.

Predictors of low antimicrobial potency. Among the features predicting low 
AA were bicyclic structures and long hydrocarbon chains in fatty acids (Table 
3). Large hydrocarbon chains in long-chain fatty acids may struggle to pene-
trate the outer membrane of Gram-negative bacteria. In contrast, short- and 
medium-chain fatty acids (SCFAs and MCFAs) penetrate more effectively due 
to their smaller size and higher solubility, integrating into the lipid bilayer 
and disrupting membrane integrity (López-Colom et al. 2019). Catharanthus 
roseus (L.) G. Don. exhibited the highest hexadecanoic acid content (64.9%), 
whereas Osmanthus fragrans (Thunb.) Lour. was the richest in linolenic acid 

Fig. 3. ROC and Precision-
Recall curves generated using 
repeated stratified k-fold 
cross-validation over 500 
models. The ROC curve on the 
left demonstrates the model’s 
ability to distinguish between 
classes with a mean AUC of 
0.8781 (±0.0533). The shaded 
region indicates the variability 
of the true positive rate (± 
1 standard deviation). The 
Precision-Recall curve on the 
right highlights the model’s 
precision in predicting the 
positive class, showing a mean 
AUC of 0.8954 (±0.0477), with 
the shaded areas representing 
the precision variability.
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Table 2. Molecular substructures linked by the logistic regression model with high antimicrobial activity against Salmonella 
Typhimurium

SMILES Fragment Drawing Bit Chemicals Previous studies

cc(c)O
hydroxyl group 

attached to a benzene 
ring

1607 carvacrol, eugenol, 
thymol

(Helander et al. 
1998; Rota et al. 

2004; Trevisan et al. 
2018)

cc(c)C
a functional group 

attached to a benzene 
ring

1754
2-phenylethanol, 
eugenol, eugenyl 

acetate

(Dorman & Deans 
2000; Bakkali et al. 
2008; Ulanowska & 

Olas 2021)

cco part of a furan ring 787 furfural (Youssef et al. 2006; 
Chai et al. 2013)

C=Cc part of a cycloalkene 835

(e)-anethole, 
bicyclogermacrene, 

ethyl cinnamate, 
germacrene d, 

limonene, alpha-
terpineol, alpha-
terpinyl acetate, 
beta-bisabolene, 

beta-caryophyllene

(Burt 2004; 
Hyldgaard et al. 
2012; Fink 2023)

COC(C)=O acetate ester 75 linalyl acetate, alpha-
terpinyl acetate

(Dorman & Deans 
2000; Burt 2004)

* The central atom is marked in blue, indicating the specific atom to which the bit refers. Aromatic atoms are highlighted in 
yellow, and aliphatic atoms are in grey
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Table 3. Molecular substructures linked by the logistic regression model with low antimicrobial activity against Salmonella 
Typhimurium

SMILES Fragment Drawing Bit Chemicals Previous 
studies

CC(C)(C)C
branched alkyl side 
chain attached to a 
bicyclic structure

549
alpha-pinene, beta-

pinene, delta-3-
carene

(Soković et al. 
2010)

CC(C)(C)O
hydroxyl group 

bonded to a tertiary 
carbon

1604 alpha-terpineol (Fink 2023)

CCCCC portion of a 
hydrocarbon chain 1143 hexadecanoic acid, 

linolenic acid
(López-Colom 

et al. 2019)

CC part of an unsaturated 
carbonyl 1017

(e)-beta-ocimene, 
carvone, citronellal, 
citronellol, eugenyl 

acetate, geranial, 
geraniol, geranyl 

acetate, limonene, 
linalool,  linalyl 

acetate, myrcene, 
alpha-farnesene, 

alpha-terpinyl acetate, 
beta-bisabolene, beta-

elemene

(Helander et 
al. 1998; Burt 

2004)

CCC1CCC1(C)C part of a bicyclic 
structure 1969 alpha-pinene (Soković et al. 

2010)

* The central atom is marked in blue, indicating the specific atom to which the bit refers. Aromatic atoms are highlighted in 
yellow, and aliphatic atoms are in grey
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Fig. 4. Partial dependence plots (PDPs) showing the marginal effect of each feature on the prediction made by 
the logistic regression model. Each plot illustrates the relationship between the selected feature and the pre-
dicted probability of the target class, while accounting for the average effect of all other features in the model.
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(17.4%). The AA of their essential oils has not been documented. However, 
ethanol and methanol extracts from C. roseus have been reported to show 
moderate inhibitory effects against S. Typhimurium (Patil & Ghosh 2010).

Pinus nigra J.F.Arnold (49%) and Pinus pinaster Aiton. (71%) exhibited 
high alpha-pinene content and previously demonstrated low AA against S. 
Typhimurium (Keeratirathawat et al. 2013). Oxygenated monoterpenoids, 
like carvacrol and thymol, show greater AA than bicyclic hydrocarbons like 
alpha- and beta-pinene (Soković et al. 2010). This is due to functional groups, 
such as phenolic hydroxyls, enhancing interaction with microbial targets 
(Guimarães et al. 2019). These groups also engage in hydrophobic interac-
tions and π-π stacking with membrane components (Zhuang et al. 2019). 
Hydrocarbon monoterpenoids lack these reactive groups, leading to lower 
activity. The structural features and lipophilic-hydrophilic balance of oxygen-
ated monoterpenoids enable effective membrane integration and intracellu-
lar target interaction, driving higher AA (Griffin et al. 2000; Soković et al. 
2010). As can be seen from Tables 2 and 3, breaking down each compound 
into Morgan fingerprint bits revealed the overlapping of some substructures 
in both high- and low-activity groups. This overlap arises because molecules 
often contain both active and inactive substructures. For example, it is euge-
nyl acetate’s phenolic core which drives its potency, not its CC segments.

Based on López-Colom et al. (2019) and our findings, a synthetic com-
pound combining a medium-chain fatty acid tail from coconut oil with 
a hydroxyl-substituted benzene ring is proposed for further studies. This 
compound may effectively target a range of pathogens, including antibiot-
ic-resistant Salmonella. Balancing hydrophilic and hydrophobic properties is 
key in antimicrobial design. Extending the alkyl chain (C7–C12) enhances 
lipophilicity and cell penetration, while adding halogens or functional groups 

Fig. 5. Bootstrapped coefficient 
estimates for the features from 
the logistic regression model, 
with 95% confidence intervals. 
The mean coefficient (dots) 
represents the average effect of 
each feature, while the error 
bars indicate the uncertainty 
in these estimates based on 
1000 bootstrap iterations. 
Features with coefficients 
further from zero have a 
stronger impact on the model’s 
predictions.
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can improve hydrogen bonding with microbial targets. Optimising these 
modifications is crucial to ensure efficacy while addressing safety concerns 
such as cytotoxicity and environmental impacts.

CONCLUSION

By using a logistic regression model trained on Morgan fingerprints of EO 
compounds, we identified molecular substructures linked to high AA against 
S. Typhimurium, thus offering a data-driven perspective on the design of po-
tential new antimicrobials. This study demonstrated that hydroxyl-substitut-
ed benzene rings, commonly found in phenolic compounds such as carvacrol, 
thymol and eugenol, are the most reliable predictors of AA against S. Typhi-
murium among EO constituents. 

Integrating advanced computational methods with botanical research 
underscores the potential of local and regional plant chemical profiles to ac-
celerate antimicrobial discovery. Our combined approach, merging chem-
informatics, microbiology, machine learning and plant science illustrates the 
promise of computational phytochemistry for future breakthroughs. 
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Analiza sastojaka esencijalnog ulja koje cilja Salmonella Typhimurium 
podržana mašinskim učenjem 

Maria Lagerholm, Mirjana Pešić, Miloš Jovanović, Marija Kuzmanović i 
Viktor Nedović

Neka eterična ulja (EU) pokazuju visoku efikasnost protiv Salmonella Typhimurium, uka-
zujući na to da bi određene molekulske strukture u njihovim komponentama mogle biti 
korisne u razvoju alternativnih antimikrobnih agenasa, posebno za suzbijanje sve većeg 
problema rezistencije na antibiotike kod ove bakterije. Kroz analizu permutacije osobina 
(feature permutation) na skupu podataka od 171 uzorka eteričnog ulja, koji obuhvataju 
682 molekulske podstrukture, identifikovali smo deset ključnih prediktora antibakteri-
jske aktivnosti protiv S. Typhimurium. Ovi prediktori iskorišćeni su za obuku modela 
mašinskog učenja zasnovanog na logističkoj regresiji. Hidroksilne grupe benzenovog 
prstena, karakteristične za fenolna jedinjenja poput karvakrola, timola i eugenola, poka-
zale su se kao snažni prediktori antibakterijske aktivnosti. Nasuprot tome, nearomatične 
biciklične strukture prisutne u monoterpenoidima, kao što su alfa-pinen, beta-pinen i del-
ta-3-karen, povezane su sa neefikasnošću protiv sojeva Salmonella. Identifikovane mole-
kulske karakteristike u skladu su sa postojećim istraživanjima o antimikrobnim svojstvi-
ma fenolnih jedinjenja, što potvrđuje korisnost pristupa zasnovanih na mašinskom učenju 
u otkrivanju prirodnih antimikrobnih agenasa.

Ključne reči: antibakterijska aktivnost, Morgan fingerprints, fenoli, klasifikacija, logistič-
ka regresija, supstituisana benzenska jedinjenja
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