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ABSTRACT: 
The anti-feeding effects of extracts from three bryophyte species, namely Atrichum undulatum (Polytrichaceae), Kindbergia 
praelonga (Brachytheciaceae), and Hypnum cupressiforme (Hypnaceae) were evaluated against Burgundy snails (Helix pomatia) 
under laboratory conditions. Ethanol, methanol, and dimethyl sulfoxide (DMSO) extracts and water decoction were used in four 
concentrations (1%, 3%, 5%, and 10% aqueous solutions). All the tested extracts demonstrated a certain level of anti-feeding effect. 
A positive relationship between extract concentration and anti-feeding effect was observed particularly for ethanol extracts of A. 
undulatum. Methanol extracts generally exhibited the weakest anti-feeding effects, except for H. cupressiforme, where the ethanol 
extracts showed the weakest performance. The potential of different bryophyte extracts as biocontrol agents is discussed.
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INTRODUCTION

Bryophytes, a group comprised of hornworts, liverworts, and mosses, thrive 
across a diverse range of ecosystems, habitats, and specific microhabitats, 
including substrates where vascular plants are unable to grow. Many species 
are capable of surviving in nutrient-poor conditions and are adapted to 
respond rapidly to brief periods favourable for photosynthesis (Tuba et al. 
2011). Like other plants, bryophytes have to protect themselves from microbial 
infections and herbivory. Due to their simple and delicate structure, lacking 
cuticles or bark which could provide protection, bryophytes employ “chemical 
weapons” as a means of defence. These “chemical weapons” consist of various 
secondary metabolites which often form part of their alternative poikilohydric 
life strategy (Frahm 2004; Xie & Lou 2009). It is widely recognised that one 
of the main factors contributing to the low levels of herbivory in bryophytes 
is the abundance of secondary compounds, some of which are unique UDC: 582.32:632.936.3(594.3)
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or insufficiently known chemical constituents of mosses (e.g. Saxena & 
Harinder 2004; Sabovljević et al. 2016). Indeed, bryophytes are rarely 
consumed as a food source, and only a small number of animals and other 
organisms are capable of digesting them, with bryophytes rarely being their 
first dietary choice (Haines & Renwick 2009). 

The apparent avoidance of bryophytes by insects (Markham et al. 2006) 
as a food source can be explained by three hypotheses: chemical defences, 
low digestibility, and low nutrient content. Most studies provide the strongest 
support and evidence for the first hypothesis, namely that bryophytes use 
chemical defences against herbivores (Davidson & Longton 1987; Davidson 
et al. 1990; Parker et al. 2007; Haines & Renwick 2009). Green bryophyte 
gametophytes are generally avoided by gastropods, whereas sporophyte 
capsules are considered suitable food sources (Glime 2007; Boch et al. 2013, 
2015). Evidence suggests that endozoochory by slugs has a positive impact 
on bryophyte diversity (Speiser 2001; Boch et al. 2015) and that gastropod 
grazing can contribute to the stability and diversity of bryophyte communities 
(Türke et al. 2012; Boch et al. 2016).

In comparison to mosses, vascular plants, particularly crops, are often 
an excellent food source for various animal species. Invertebrates, such as 
molluscs, are recognised as pests (Kumar 2020) which damage field crops, 
vegetables, and fruit trees, thus reducing the productivity and yield of 
cultivated plants (Godan 1983). Therefore, snails, as significant pests, can be 
controlled in fields using various methods, including physical or mechanical, 
biological, and chemical approaches (Kumar 2020). In recent years, alternative 
control approaches using repellents or antifeedants have provided an efficient 
new strategy in green production and food safety (El-Zemity et al. 2001).

Helix pomatia Linnaeus, 1758 is one of the largest terrestrial molluscs in 
Europe, with a native range spanning across Central and Western Europe 
(Egorov 2015 and references therein). The species has also been widely 
introduced by humans to various regions worldwide, including northern Africa 
and America (Egorov 2015). This herbivorous snail is listed as endangered on 
several Red Lists, however, it is also recognised as a pest species (Tluste & 
Birkhofer 2023).

To test the hypothesis that bryophyte secondary metabolites exhibit an 
anti-feeding effect on Burgundy (Roman, escargot) snails (Helix pomatia), 
we evaluated various types of extract and their concentrations from three 
randomly selected moss species, representing three different families: Atrichum 
undulatum (Hedw.) P. Beauv. (Polytrichaceae), Kindbergia praelonga (Hedw.) 
Ochyra (Brachytheciaceae), and Hypnum cupressiforme Hedw. (Hypnaceae).

The primary goal of this pilot study was to investigate whether the 
bryophyte species described above exhibit any mollusc-repellent properties 
i.e. anti-feeding effects. Additionally, the results obtained will indicate the 
potential for using bryophyte extracts as natural repellents in the production 
of green vegetables, as well as their viability in the future development of 
commercial bio-repellent or even green pesticide products.

MATERIALS AND METHODS

Plant material. Three moss species were randomly selected to test their anti-
feeding potential against snails. Samples of three common bryophyte species, 
namely A. undulatum, K. praelonga, and H. cupressiforme, were collected in 
July 2021 on the slopes of Pavlovac Hill (N44°14’ (44.23°), E20°48’ (20.80°) in 
the central part of the Republic of Serbia. The species were found in deciduous 
forests, as part of the Quercetum frainetto-cerris prov. association. The snails 
(Helix pomatia) used in the experiment were collected at the same location 
and released back into the wild after testing.
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Atrichum undulatum is a robust, widespread acrocarpous moss species 
which can form extensive patches. Due to these characteristics, A. undulatum 
has been studied in various types of bryological research (e.g. Beckett et al. 
2000; Bijelović et al. 2004; Hu et al. 2016). Moreover, numerous polyphenolic 
compounds have been documented from A. undulatum, including flavonoids 
and glycosides of three- and tetraoxygenated coumarins (Jung et al. 1994; 
Basile et al. 1999).

Kindbergia praelonga is a moss species widely distributed in lowland 
areas, usually growing on banks, on turf, on the ground in woodland, and 
tree trunks. Research on this species remains limited, and the chemical 
constituents of this species have only been partially investigated (Jocković et 
al. 2008; Pejin et al. 2010).

Hypnum cupressiforme is a very common, widespread pleurocarpous 
moss species which prefers acidic to slightly alkaline microhabitats such as 
tree trunks, logs, walls, and rocks. Due to its size, abundance, and frequency 
of occurrence, H. cuppresiforme is frequently used in air pollution monitoring 
studies (e.g. Adamo et al. 2011; Berisha et al. 2016; Capozzi et al. 2017). Its 
large biomass and abundance have also made it the subject of chemical studies 
and it is known to produce several compounds of practical interest (e.g. Lunić 
et al. 2022; Petkova et al. 2023).

Extract preparation. The moss extracts were prepared following a 
standardised procedure for all three species. The green moss material 
was cleared of mechanical impurities, dried to a constant weight at room 
temperature, and then finely ground using a hammer mill. A 0.1 g sample 
of moss material from each species was immersed in 10 ml of one of the 
following solvents: 80% methanol, 99% ethanol, DMSO (dimethyl sulfoxyde), 
or distilled water. The selection of solvents aimed to extract different classes of 
compounds, distinguishing between polar and nonpolar substances. DMSO 
was specifically chosen due to its inert properties, ensuring it did not exhibit 
biological activity in contrast to solvents such as methanol or ethanol, as 
discussed in Sabovljević et al. (2009, 2011). The water extracts were prepared 
by boiling water at 100°C, producing a decoction. The resulting extracts were 
then filtered through a cellulose-acetate membrane (0.45 µm), and subsequent 
water dilutions (1%, 3%, 5%, and 10%) were made for further experimentation. 

Experimental design. In each of the identical-sized boxes, two lettuce leaves 
(commercially bought bio-farmed Lactuca sativa L.) were placed alongside 
a single starved Burgundy snail (Fig. 1A). The snails were deprived of food 
for 48 hours prior to the experiment but were maintained active with high 
humidity (above 75%) at room temperature (22°C). The leaves were labelled 
to distinguish them at the beginning of the experiment. One of the lettuce 
leaves was coated with a thin layer of moss extract (treatment), while the other 
was coated with distilled water (control). In total, there were 16 boxes for each 
moss species, with four boxes designated for each type of solvent (methanol, 
ethanol, DMSO, and water) and four for each of the different water dilutions 
of the extracts (1%, 3%, 5%, and 10%). The surface areas of the lettuce leaves 
were measured before placement in the boxes, with the shape of each leaf 
outlined on paper (Fig.1C left). These papers were then scanned, and the leaf 
areas were quantified using image analysis software (Digimizer version 3.7, 
MedCalc Software, Belgium). The boxes containing the test animals (snails) 
and lettuce leaves were maintained at a constant room temperature of 22°C 
and high humidity (above 75%) throughout the 24-hour testing period. 
After 24 hours of feeding, the remaining lettuce leaf material (Fig. 1B) was 
subjected to the same procedure for surface area measurement (Fig. 1C right). 
The amount of leaf consumed was calculated by subtracting the area of the 
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leaf after 24 hours (eaten leaf surface) from the area at the beginning of the 
experiment (initial leaf surface) and expressed as a percentage of eaten leaf 
area. The same procedure was applied to the extracts of all three species, and 
the entire experiment was repeated three times.

Statistical analysis. The obtained data were statistically analysed using 
analysis of variance (ANOVA), followed by the least significant difference 
(LSD) post hoc test with the Bonferroni p-value adjustment method in Statistica 
for Windows 5.1 (McCallum 1999). Data visualisation was done using the R 
programming language (v. 4.3.1) (R Core Team 2024).

Fig. 1. The presentation of the 
experimental setup. A starved 
Burgundy snail and two 
lettuce leaves were placed in 
the box (A) and after 24 hours 
of feeding (B) the leaf areas 
were measured. The surface 
areas of the lettuce leaves were 
measured before placement in 
the boxes (C left), and after the 
experiment (C right) with the 
shape of each leaf outlined on 
paper.

Fig. 2. Anti-feeding experiment results of four different extract types (ethanol, methanol, DMSO, and water decoction) 
of moss A. undulatum. A – The effects of different concentrations of various extract types (striped bars) and water-treated 
controls (non-striped bars) on the percentage of eaten leaf surface. B – Difference in eaten leaf surface between the water 
controls and treatments of different concentrations of various extract types. The results are presented as means with the error 
bars representing standard errors. The letters above the bars indicate the statistically significant differences (p < 0.05) between 
the experimental groups.



Sabovljević et al.: Anti-feeding effect of moss species  65

Fig. 3. Anti-feeding experiment results of four different extract types (ethanol, methanol, DMSO, and water decoction) of 
moss K. praelonga. A – The effects of different concentrations of various extract types (striped bars) and water-treated controls 
(non-striped bars) on the percentage of eaten leaf surface. B – Difference in eaten leaf surface between the water controls 
and treatments of different concentrations of various extract types. The results are presented as means with the error bars 
representing standard errors. The letters above the bars indicate the statistically significant differences (p < 0.05) between the 
experimental groups. 

RESULTS

The strongest anti-feeding effect of the A. undulatum extracts, characterised 
by the largest difference in the eaten surface area between the control and 
treated lettuce leaves, was observed in the case of the 10% ethanol extract 
(Fig. 2A, B). Furthermore, a strong anti-feeding effect was documented when 
1% and 10% water decoction, 3% DMSO, and 5% methanol extracts were 
applied. A certain level of anti-feeding effect of A. undulatum extracts was 
documented across all the applied treatments, with the exception of the 1% 
and 10% methanol and 5% water decoction extracts (Fig. 2A, B).

The results for the K. praelonga extracts indicate that the 3% and 5% 
DMSO extracts exhibit the strongest anti-feeding effect (Fig. 3A, B). A strong 
anti-feeding effect against the Burgundy snails was also observed with the 
two highest concentrations of ethanol extracts (5% and 10%) and the 5% water 
decoction extract (Fig. 3A, B). Anti-feeding activity against the snails was 

Fig. 4. Anti-feeding experiment results of four different extracts types (ethanol, methanol, DMSO, and water decoction) of 
moss H. cupressiforme. A – The effects of different concentrations of various extract types (striped bars) and water-treated 
controls (non-striped bars) on the percentage of eaten leaf surface. B – Difference in eaten leaf surface between the water 
controls and treatments of different concentrations of various extract types. The results are presented as means with the error 
bars representing standard errors. The letters above the bars indicate the statistically significant differences (p < 0.05) between 
the experimental groups.
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noted in all treatments with the K. praelonga extracts, except for the 1% water 
decoction, and the 3% and 10% methanol extracts (Fig. 3A, B).

The most significant difference in eaten lettuce leaf surface (58%) between 
the control and treatment leaves among all the tested extract types and species 
was observed when a 3% DMSO extract of H. cupressiforme was applied, (Fig. 
4B). A notable anti-feeding effect of H. cupressiforme was also evident with the 
application of 1% and 10% water decoction extracts and the 5% DMSO extract 
(Fig. 4A, B). In contrast, no anti-feeding effect was observed with 3% ethanol, 
10% methanol, 1% DMSO, or 5% water decoction extracts (Fig. 4A, B).

DISCUSSION

A clear positive relationship between extract concentration and anti-feeding 
effect was observed for the ethanol extracts, particularly for A. undulatum. In 
contrast, the methanol extracts generally showed a lack of anti-feeding effects, 
with the weakest overall performance, except for H. cupressiforme, where the 
ethanol extracts were the least effective. 

The variations in the anti-feeding performance of the tested extracts 
are likely attributable to differences in the extraction efficiency and yield of 
the solvents, as previously demonstrated by Klavina & Springe (2015) for 
polyphenolic compounds. For instance, DMSO was found to dissolve more 
polyphenolics than ethanol or methanol in Rhytidiadelphus triquetrus, while 
ethanol was the most efficient solvent for Sphagnum rubellum. Furthermore, 
the chemical structures of the compounds are closely related to their solubility 
in water or organic solvents. As a result, the extracts from the tested mosses 
contain a variety of chemical compounds with different properties, which 
may affect the snails in diverse ways.

All the snails used in our study survived, indicating that no molluscicidal 
effects were observed. Based on the results obtained, extracts from A. 
undulatum, K. parelonga, and H. cupresssiforme may be used as natural 
repellents for Burgundy snails. A similar anti-feeding effect, without biocidal 
activity, was observed for extracts from two moss species Neckera crispa and 
Porella obtusata against the slug Arion lusitanicus Mabille, 1868 (Frahm & 
Kirchhoff 2002). However, to further investigate the bio-repellent potential 
of the tested species, an analysis of the chemical content and biological activity 
of the extracts is needed. 

Previous studies have detected phenolic compounds, such as phenolic acids 
and flavonoids, in extracts of K. praelonga (Jocković et al. 2008). Similarly, 
phenolic acids and flavonoids were identified in H. cupressiforme (Smolińska-
Kondla et al. 2022), and phenolics were a major chemical component of A. 
undulatum extracts (Chobot et al. 2008). Given that phenolic compounds 
are well known for their potent antioxidant properties and diverse biological 
activities, it can be proposed that, at least to some extent, they contribute to 
the high anti-feeding effects observed in the species investigated. Phenolic 
components are shown to have insecticidal effects (e.g. Rodríguez et al. 
2022). Bryophytes generally synthesise a wide array of secondary metabolites, 
including volatile compounds, many of which exhibit antioxidant activity 
(Asakawa & Ludwiczuk 2018). In addition to phenolics, volatile compounds 
have been identified in extracts of H. cupressiforme (Karataşa & Yayintasb 
2024), which should be considered as contributing to the repellent effects this 
species exerts on snails. Investigating the chemical profiles of species showing 
anti-feeding effects is essential, as such plants can be subjected to simple and 
accessible tests which may lead to the development of environmentally friendly 
formulations for vegetable treatments. These formulations would deter but not 
harm snails, while simultaneously promoting human health, food production, 
and safety (Kumar 2020).
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In order to produce commercial products suitable as natural repellents 
or even pesticides in agricultural fields from bryophytes, a large biomass is 
required (Dziwak et al. 2022). Collecting bryophytes from natural habitats is 
not feasible, both from a conservation perspective (due to potential population 
damage) and also because of the impossibility of obtaining the large quantities 
of pure axenic material necessary. Consequently, in vitro, and axenic 
propagation methods, including the use of bryo-reactors offer significant 
potential (Decker & Reski 2004, 2008). Experiments have demonstrated the 
feasibility of using in vitro-grown bryophytes for these purposes (Dziwak et 
al. 2022). The bioactivity of extracts from axenically grown bryophytes has 
been compared with those from wild-collected specimens, with the former 
generally showing superior results (Sabovljević et al. 2011; Mukhia et al. 
2019). Furthermore, laboratory-grown material can be enhanced through the 
optimisation of growth conditions, which in turn can improve the speed of 
development and induce slight modifications in the synthesis of the specific 
target molecules naturally produced by the selected species (e.g. Sabovljević 
et al. 2017; Dziwak et al. 2022).

Bryophytes, often overlooked, offer significant potential for applied 
research (Sabovljević & Sabovljević 2010; Latinović et al. 2019) 
Considering the fact that only 5% of bryophyte species have been chemically 
studied to date (Asakawa 2007), this group of plants deserves greater 
attention. Further research is needed to increase our understanding of the 
biotic interactions between bryophytes and invertebrates. Moreover, it has 
been demonstrated that such research contributes novel insights and advances 
green technologies (e.g. Matić et al. 2024). However, knowledge regarding the 
chemical constituents of bryophytes remains insufficient, with many new and 
unique chemical structures being described every year (e.g. Asakawa et al. 
2013; Asakawa & Ludwiczuk 2018).

CONCLUSION

The results obtained clearly show that all the extracts of the tested mosses 
exhibit repellent i.e. anti-feeding effects on burgundy snails, thus highlighting 
the huge potential of bryophytes as green factories of environmentally 
friendly products. Additionally, these findings underscore the relevance of 
bryophyte applications in biotechnology, biotechnical processes and pest 
control. Furthermore, this research represents a crucial first step towards the 
application of bryophytes in the development of environmentally friendly 
products and provides further elucidation of their applied potential. 
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Efekat ekstrakata tri vrste mahovina (Atrichum undulatum, 
Kindbergia praelonga i Hypnum cupressiforme) na ishranu 
vinogradskog puža (Helix pomatia)

Marko S. Sabovljević, Nada Nikolić, Djordje P. Božović, Nikolina A. 
Matić, Jasmina B. Šinžar-Sekulić, Michal Goga, Marija V. Ćosić, Milorad 
M. Vujičić i Aneta D. Sabovljević

Efekat ekstrakata tri vrste mahovina – Atrichum undulatum (Polytrichaceae), Kindbergia 
praelonga (Brachytheciaceae), i Hypnum cupressiforme (Hypnaceae) na ishranu 
vinogradskog puža (Helix pomatia) je ispitivan u laboratorijskim uslovima. Ekstrakti 
etanola, metanola i dimetil sulfoksida (DMSO) i vodena dekokcija korišćeni su u četiri 
koncentracije (1%, 3%, 5% i 10% - vodeni rastvori). Svi testirani ekstrakti su pokazali 
određeni nivo efekta protiv hranjenja. Pozitivna veza između koncentracije ekstrakta 
i efekta protiv hranjenja primećena je posebno za etanolne ekstrakte A. undulatum. 
Metanolni ekstrakti su generalno pokazali najslabije dejstvo u supresiji hranjenja, osim 
kod H. cupressiforme, gde su etanolni ekstrakti pokazali najslabiji učinak. Potencijal 
različitih briofita kao sredstava za biokontrolu je diskutovan.

Ključne reči: briofite, repelent, kontrola štetočina, zelena rešenja, biokontrola
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