Original Scientific Paper # The phytochemical composition and biological activities of different types of extracts of *Achillea ageratifolia* subsp. *serbica* Ivana D. Radojević¹, Mirjana Ž. Grujović^{1*}, Ljiljana R. Čomić¹, Milan S. Dekić², Gorica T. Djelić¹ and Nevena R. Мінаіlović³ - 1 University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia - 2 State University of Novi Pazar, Department of Chemical and Technological Sciences, Vuka Karadzića bb, Novi Pazar, Republic of Serbia - 3 University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia - * Correspondence: mirjana.grujovic@pmf.kg.ac.rs #### ABSTRACT: Achillea ageratifolia subsp. serbica is a poorly investigated endemic of the Balkan area and there are almost no data about the potential application of this plant. The purpose of this study was the investigation of the phytochemical composition, antioxidant, antimicrobial, and antibiofilm activity of its water, acetone, and ethyl acetate extracts. The phenolic composition and flavonoids were established using high-performance liquid chromatography with photodiode array detection (HPLC-PDA) analysis, while the chemical composition of the ethyl acetate extracts of the aerial parts of the plant was investigated by gas chromatography-mass spectrometry (GC and GC-MS). Antioxidant and antimicrobial activity, as well as the inhibition ability of biofilm formation on Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 biofilms, were also investigated. The total phenolic content ranged from 18.61 mgGAE/g to 43.78 mgGAE/g of extract. The total flavonoid content ranged from 10.79 mgRUE/g to 34.02 mgRUE/g. The acetone and ethyl acetate extracts of the aerial parts contained chlorogenic acid, myricetin, apigenin, and luteolin. Analysis of the volatile specialized metabolites in the ethyl acetate extract of the aerial parts allowed for the identification of thirty-two constituents. The highest antioxidant activity was detected in the water extract of the aerial parts of the plant (IC $_{\scriptscriptstyle{50}}$ = 641.06 $\mu g/ml)$ and in the ethyl acetate extract of the root (IC₅₀ = 675.33 μ g/ml). Bacillus subtilis and S. aureus showed higher sensitivity to the tested extracts, while the antifungal activity of the marked extracts was significant. All extracts showed a moderate inhibitory effect on the ability of biofilm formation of P. aeruginosa ATCC 27853, while only the ethyl acetate inflorescence extract showed an effect on the biofilm formation of P. aeruginosa ATCC 27853. The tested extracts showed the potential for further investigation and possible application as biofungicides. ## **Keywords:** antimicrobial activity, antibiofilm activity, antioxidant activity, phenols, flavonoids, Asteraceae UDC: 582.998.1:547.56+547.972.2 Received: 04 July 2020 Revision accepted: 07 October 2020 #### INTRODUCTION An endemic of the Balkan Peninsula, Achillea ageratifolia subsp. serbica (Nyman) Heimerl belongs to the Asteraceae family. The genus Achillea is widespread through Europe, temperate areas of Asia, and North America (Simonetti 1990). Many studies indicate the wide application of bioactive components isolated from the representatives of the genus Achillea (Tuberoso et al. 2009; Saeidnia et al. 2011; Mohammadhosseini et al. 2017). The medicinal properties of the plant are related to the presence of specialized metabolites, such as flavonoids, phenolic acids, coumarins, terpenoids, and sterols (SAEIDNIA et al. 2011). Apigenin, luteolin, and quercetin are the most frequently identified flavonoids (Tuberoso et al. 2009), while Achillea millefolium L. is the most studied plant species of the genus Achillea, used in folk medicine (FIERASCU et al. 2015; Georgieva et al. 2015; Shah & Peethambaran 2017; ABOU BAKER 2020). Phenolic acids, flavonoids, tannins, sesquiterpenes, and lactones are just some of the compounds isolated from A. millefolium, which are related to anti-inflammatory activity (SHAH & PEETH-AMBARAN 2017). Achillea millefolium is well-known for its usage in pharmacy and medicine, but other species that belong to this genus have been poorly investigated. Si et al. (2006) indicated that plant extracts of Achillea clavennae L., A. holosericea Sm., A. lingulata Waldst. & Kit., and A. millefolium have a wide spectrum of antibacterial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella enteritidis and antifungal activity against Aspergillus niger and Candida albicans. Achillea ageratifolia subsp. serbica is a poorly investigated species. According to the rulebook on the declaration and protection of protected and strictly protected wild species of plants, animals, and fungi (SGRS 2010-2016), this plant species is protected in Serbia. So far, there are scarce data on the medicinal properties of the plant. Mladenović & Radulović (2017) identified over 300 compounds accounting for 95.5-97.2% of the essential oils obtained from the dry parts of A. ageratifolia subsp. serbica. In terms of bioactive metabolites, so far, it has been shown that A. ageratifolia subsp. serbica is rich in flavonoids, especially 6-hydroxykaempferol 3,6-dimethyl ether and hispidulin (VALANT-VETSCHERA & WOLLENWEBER 2001). Based on the fact that there is almost no scientific data related to the biological activity of this plant, the aim of the study was the evaluation of the chemical composition of the different types of extracts made from the aerial parts of the plant, as well as from the inflorescence and the root separately. The goal of the research was also to determine the antioxidant, antimicrobial and antibiofilm activity of the mentioned plant extracts in order to investigate their potential usage. #### MATERIAL AND METHODS Plant material and preparation of extracts. All of the plant samples of A. ageratifolia subsp. serbica were collected in May 2017, during the flowering season. The plant material was collected from the Kablar Mountain in Central Serbia, at 889 m above sea level. Determination was based on Gajić (1974) and Richardson (1976). The voucher specimens are deposited in the Herbarium of the Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade - Faculty of Biology (BEOU) under accession number 17448. The collected plant material was air-dried in darkness at an ambient temperature. The dried, aerial plant material was extracted by maceration with water, acetone, and ethyl acetate. The inflorescence and the root were extracted by maceration with ethyl acetate. Briefly, 25 g of plant material was soaked in 125 ml of solvent. Maceration of the aerial plant material, as well as the inflorescence and the root, was carried out three times, at room temperature, using fresh solvent every 24 hours. The obtained filtrates were evaporated to dryness using a rotary evaporator at 40°C. The obtained extracts were kept in sterile sample tubes and stored at -20°C until use. #### Determination of total phenolic and flavonoid content. The total phenolic content was determined using the Folin-Ciocalteu method (WOOTTON-BEARD et al. 2011) and expressed as milligram of gallic acid equivalents per gram of extract (mgGAE/g of extract). The aluminum chloride method (QUETTIER-DELEU et al. 2000) was used to determine the total flavonoid content, which was expressed as milligram of rutin equivalents per gram of extract (mgRUE/g of extract). HPLC equipment and chromatographic analysis of phenolic compounds: RP-HPLC analysis. Phenolic acids and flavonoids in the acetone and ethyl acetate extracts from the aerial parts of A. ageratifolia subsp. serbica were identified by comparing the retention times and UV-Vis absorption spectra of unknown peaks with co-injection reference standards. The identified compounds were confirmed by spiking the sample with the standard compound and monitoring the changes in the peak shape and spectral characteristics. Both extracts were analyzed in triplicate and the data are reported as the mean \pm SD. The method was described in detail in MIHAILOVIĆ et al. (2019). GC-FID and GC-MS analyses. The chemical composition of the ethyl acetate extracts isolated from the aerial parts of A. ageratifolia subsp. serbica was investigated by GC and GC-MS analysis. The GC-MS analyses were performed in triplicate on a Hewlett-Packard 6890N gas chromatograph equipped with a DB-5MS phenyl methyl siloxane capillary column (30 m × 0.25 mm, film thickness 0.25 µm, Agilent Technologies, USA) and coupled with a 5975C mass selective detector from the same company. The injector and interface were operated at 250 and 320°C, respectively. The oven temperature was raised from 70 to 315°C at a heating rate of 5°C/min and then isothermally held for 10 min. Helium was used as the carrier gas at 1.0 ml/min. The samples (5 µl of the extract solution in diethyl ether) were injected in a pulsed split mode (split ratio 40:1). The MS conditions were as follows: ionization energy 70 eV, acquisition mass range 35-700 amu, and scan time 0.34 s. GC-FID analysis was carried out under the same experimental conditions using the same column as described for the GC-MS analysis. The extract constituents were identified by comparing their linear retention indices determined relative to the retention times of C8-C34 n-alkanes on the DB-5MS column (van den Dool & Kratz 1963) with those reported in the literature (ADAMS 2007), and through a comparison of their mass spectra with those from a number of commercial and in-house MS libraries (NIST11, Wiley06, MassFinder and Adams) by the application of AMDIS software (DTRA/NIST 2002). Also, a homemade MS library with the spectra corresponding to pure substances was used, and finally, wherever possible, the identification was achieved by co-injection with an authentic sample. The percentage composition was computed from the GC-FID peak areas without the use of correction factors. Determination of antioxidant activity (DPPH assay). The ability of the plant extract to scavenge DPPH free radicals was assessed using the method described by TAKAO et al. (1994). Ascorbic acid (vitamin C) was used as a positive control. The experiment was performed in triplicate. Based on the obtained results, the percentage inhibition of DPPH radicals and the IC₅₀ value were determined. The percentage of inhibition was calculated using the following equation: where A_{control} was the absorbance of the control sample and A_{sample} the absorbance of the extract. The IC₅₀ value is the effective concentration at which 50% of DPPH radicals were scavenged. It was obtained from the graph of scavenging activity (%) versus concentration of samples, described in detail in Vasić et al. (2012). **Antimicrobial activity.** The antimicrobial activity of the tested extracts was tested against 10 strains of bacteria (5 strains of Gram-positive bacteria: Bacillus pumilus NCTC 8241, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923 and clinical isolates of Bacillus subtilis and Staphylococcus aureus; 5 strains of Gram-negative bacteria: Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12453, Escherichia coli ATCC 25922, and clinical isolates of Salmonella enterica and Escheri- chia coli; and 2 strains of yeast: Candida albicans ATCC 10231 and clinical isolate *Rhodotorula mucilaginosa*). All clinical isolates were a generous gift from the Institute of Public Health, Kragujevac. The other microorganisms were provided from a collection held by the Microbiology Laboratory, Faculty of Science, University of Kragujevac. The suspensions of microorganisms were prepared by the direct colony method. The turbidity of the initial suspension was adjusted using a 0.5 McFarland densitometer (DEN-1, BioSan, Latvia). The initial bacterial and yeast suspensions were additionally diluted in 1:100 and 1:1000 ratio in sterile 0.85% saline. The antimicrobial activity was tested by determining the minimum inhibitory concentration (MIC) and the minimum microbicidal concentration (MMC) using the microdilution method with resazurin (SARKER et al. 2007). The stock concentration of the tested plant extracts was 10000 µg/ml. Twofold serial dilutions of plant extracts were made in sterile 96-well plates containing Mueller-Hinton broth for bacteria and Sabouraud dextrose broth for yeast. The tested concentration range was from 5000 to 39 μg/ml. Doxycycline and fluconazole, dissolved in a nutrient liquid medium, were used as positive controls. Stock solutions of crude extracts obtained by dissolving in 10% DMSO were used as negative controls. Each test included growth control and sterility control. All tests were performed in duplicate. **Antibiofilm activity.** The antibiofilm activity on S. aureus ATCC 6538 and P. aeruginosa ATCC 27853 was tested with the method described in O'Toole et al. (2000). In 96-well microtiter plates 100 µl of TBS (tryptone soy broth) broth was added. 100 µl of the tested extract was added into the first row of the plates, with an initial concentration of 10000 µg/ml, and serial two-fold dilutions were made down to 80 µg/ml. Subsequently, 10 µl of bacterial suspension (0.5 McFarland) was added into each well. The microtiter plates were then incubated for 48 hours at 37°C. The rest of the experiment was done as described in Muruzović et al. (2016). The difference in the procedure of measuring the effect on the formed biofilm is that varying concentrations of the extract were added to the microtiter plates with the biofilm formation of the tested bacteria. The results were expressed as biofilm inhibitory concentration, (BIC₅₀), defined as the lowest concentration of extract that showed 50% inhibition on the biofilm formation (Chaieb et al. 2011). All tests were performed in duplicate and BIC₅₀ was calculated. Tetracycline was used as a positive control. **Data analysis.** All data were presented as means ± standard deviations where appropriate, using Microsoft Excel (Redmond, Washington, DC, USA). The paired-samples t-test was used to compare the content of phenols and flavonoids in different types of extracts. The data were analyzed using SPSS version 20 software (SPSS Inc., Chicago, IL, USA). #### **RESULTS** The highest percentage of extraction yield was recorded from the water extract of the aerial parts of *A. ageratifolia* subsp. *serbica* (16.16%), while the lowest was obtained from the ethyl acetate extract of the root (0.95%). It could be concluded that the extraction yield was solvent-dependent. The total phenol and flavonoid content in the tested extracts. Specialized plant metabolites are soluble in different solvents, and this was the criteria for selecting the water, acetone and ethyl acetate for the extraction of phenols and flavonoids. The highest content of total phenolic compounds was obtained in the acetone extract from the aerial parts (43.78 mgGAE/g), while the lowest content was measured in the water extract from the aerial parts (18.61 mg GAE/g) (Table 1). The highest flavonoid content was obtained in the acetone extract from the aerial parts (34.02 mgRUE/g), while the lowest content was obtained in the ethyl acetate extract of the root (10.79 mgRUE/g) (Table 1). Generally, the highest phenol and flavonoid content was measured in the acetone extract from the aerial parts of the plant (43.78 mgGAR/g and 34.02 mgRUE/g). **RP-HPLC** analysis of the extracts. Based on the results of the HPLC analysis, both the acetone and ethyl acetate extracts of the aerial parts of *A. ageratifolia* subsp. *serbica* shared a similar phenolic composition containing chlorogenic acid, myricetin, apigenin, and luteolin (Figs. 1, 2). The main difference in their phenolic composition was that caffeic acid was identified in the ethyl acetate extract only. All the identified phenolic compounds were found in higher amounts in the acetone extract than in the ethyl acetate extract, with the exception of caffeic acid, which was **Fig. 1**. HPLC chromatogram of the acetone extract from the aerial parts of *Achillea ageratifolia* subsp. *serbica* (1-chlorogenic acid, 2-myricetin, 3-apigenin, 4-luteolin). **Fig. 2**. HPLC chromatogram of the ethyl acetate extract from the aerial parts of *Achillea ageratifolia* subsp. *serbica* (1-chlorogenic acid, 2-caffeic acid, 3-myricetin, 4-apigenin, 5-luteolin). Table 1. The total phenol and flavonoid content. | Ordinal
number
of extracts | Type of extracts | Phenols*
(mgGAE/g
of extract) | Flavonoids*
(mgRUE/g
of extracts) | IC ₅₀ *
(μg/ml) | |----------------------------------|-------------------------------|-------------------------------------|---|-------------------------------| | 1 | Aerial parts – water | 18.61 ± 1.99 ^a | $10.90 \pm 0.74^{\rm b}$ | 641.06 ± 2.40 | | 2 | Aerial parts – acetone | 43.78 ± 4.88° | 34.02 ± 6.52^{d} | 732.07 ± 6.47 | | 3 | Aerial parts – ethyl acetate | 28.67 ± 1.59° | 27.86 ± 0.47° | 988.78 ± 2.80 | | 4 | Inflorescence – ethyl acetate | 30.11 ± 2.94 ^f | 29.31 ± 1.29 ^f | 825.60 ± 2.60 | | 5 | Root – ethyl acetate | 33.00 ± 4.69 ^g | 10.79 ± 1.07 ^h | 675.33 ± 2.21 | | 5 | Ascorbic acid (vitamin C) | / | / | 5 ± 2.64 | ^{*}mean value ± standard deviation; different letters indicate significant differences between the mean values of phenols and flavonoids for different extract types found in the ethyl acetate extract only (Table 2). The dominant component in both extracts was luteolin, with a higher content (9.663 mg/g DW) in the acetone extract than in the ethyl acetate extract (9.109 mg/g DW). Flavonoid apigenin was found in the acetone extract at a concentration of 1.500 mg/g DW, while in the ethyl acetate extract it presented at 1.162 mg/g DW. Flavonoid myricetin was also present in both extracts, but with a four times higher concentration in the acetone extract. The acetone extract contained a higher amount of chlorogenic acid than the ethyl acetate extract (1.249 and 0.398 mg/g DW, respectively), while an inconsiderable amount of caffeic acid was found in the ethyl acetate extract only (Table 2). GC-FID and GC-MS analyses. A detailed chemical compositional analysis of the metabolites in the ethyl acetate extract of the dry aerial parts of A. ageratifolia subsp. serbica allowed for the identification of thirty-two compounds, accounting for almost 80% of the peak areas in the gas chromatogram (Table 3). The volatile fraction of the extract was dominated by common wax constituents. The *n*-alkanes comprised more than half of the composition, with nonacosane (37.3%) and hentriacontane (9.8%) as the most abundant. The *n*-alkane distribution followed the usual pattern found in higher plants (tracheophytes) - of high carbon preference index (CPI) with odd-numbered carbon dominance centered at n- C_{29} of a Gaussian-like curve (RADULOVIĆ et al. 2012). The analysis also showed the presence of steroid compounds with a stigmastane nucleus and of triterpenes widespread in terrestrial plants – stigmasta-5,22-dien-3βol (stigmasterol, 1.0%), stigmast-5-en-3β-ol (β-sitosterol, 3.4%) and α -amyrin (2.9%). Antioxidant activity of the extracts. The highest antioxidant activity was detected in the water extract from the aerial parts of the plant (IC₅₀ = $641.06 \mu g/ml$) and the ethyl acetate extract of the root (IC₅₀ = 675.33 μ g/ml) (Table 1). The lowest activity was detected for the ethyl acetate extract from the aerial parts of the plant (IC₅₀ = 988.78 µg/ml). Compared to the positive control (vitamin C IC₅₀ = 5 μ g/ml), the tested extract showed limited antioxidant activity. Antimicrobial activity. The intensity of the antibacterial activity of the tested extracts depended on the species of bacteria and the type of extract (Table 4). The values of MIC and MBC were in the range from 39 μ g/ml to >5 000 μg/ml. Gram-positive bacteria showed higher sensitivity to the tested extracts than Gram-negative bacteria. Clinical isolates of B. subtilis and S. aureus, as well as S. aureus ATCC 25923 were sensitive to the tested extracts (MIC 39-156 µg/ml, MBC 39-317 µg/ml), with the exception of the water extract from the aerial parts. The ethyl acetate extract of the root showed the highest effect on B. subtilis (MIC 39 µg/ml), while the acetone extract from the aerial parts showed the same effect on both B. subtilis and S. aureus. The ethyl acetate extracts of the inflorescence and root showed an inhibitory effect on S. aureus and S. aureus ATCC 25923 (MIC from 78 to 156 µg/ml). The acetone extract from the aerial parts of the plant exhibited an effect on certain Gram-negative bacteria. For E. coli ATCC 25922, the MIC value was 156 µg/ml, while for E. coli and S. enterica, MIC was 317 µg/ml. The MIC and MFC values for the tested yeasts were in the range from 156 μ g/ml to 5 000 μ g/ml (Table 4). Rhodotorula mucilaginosa showed sensitivity to the ethyl acetate extract from the aerial parts and the root of the plant (MIC 156 μg/ml), while C. albicans ATCC 10231 was sensitive to the ethyl acetate extract of the inflorescence and root (MIC 317 µg/ml). When comparing the results with the positive control, the ethyl acetate extract from the aerial parts, the inflorescence, and the root, as well as the acetone extract from the aerial parts of the plant showed noticeable antifungal activity. | Table 2 . The composition | sition of the ethyl a | cetate extract from t | the aerial parts o | of Achillea agera | tifolia subsp. s | serbica. | |----------------------------------|-----------------------|-----------------------|--------------------|-------------------|------------------|----------| | | | | | | | | | Compound | t _r (min) | Concentration* | | | | | |------------------|----------------------|--------------------------|-------------------------------|--|--|--| | | | Aerial parts (acetone) | Aerial parts (ethyl acetate) | | | | | Chlorogenic acid | 13.00 | 1.249 ± 0.04^{a} | 0.398 ± 0.008^{b} | | | | | Caffeic acid | 13.58 | - | 0.346 ± 0.008 | | | | | Myricetin | 19.62 | $2.297 \pm 0.06^{\circ}$ | 0.501 ± 0.009^{d} | | | | | Apigenin | 20.42 | $1.500 \pm 0.06^{\rm e}$ | $1.162 \pm 0.05^{\mathrm{f}}$ | | | | | Luteolin | 21.30 | 9.663 ± 0.10^{g} | $9.109 \pm 0.11^{\rm h}$ | | | | ^{*}mean value (mg/g dry extract) ± standard deviation; different letters indicate significant differences between the mean values of phenols and flavonoids for different extract types **Table 3.** The phenolic composition of the aerial parts of *Achillea ageratifolia* subsp. serbica. | RI calc. ^a Compound | | Content [%] ^b | Identification Method | | |--------------------------------|--|--------------------------|-----------------------|--| | 801 | Hexanal | Т | RI,MS,Co-GC | | | 1040 | Lavender lactone | T | RI,MS | | | 1148 | Camphor | 1.4 | RI,MS,Co-GC | | | 1168 | Borneol | T | RI,MS,Co-GC | | | 1288 | Bornyl acetate | T | RI,MS,Co-GC | | | 1587 | Caryophyllene oxide | T | RI,MS,Co-GC | | | 1592 | 1-Hexadecene | T | RI,MS | | | 1792 | 1-Octadecene | T | RI,MS | | | 1845 | Hexahydrofarnesyl acetone | 0.5 | RI,MS | | | 1966 | Hexadecanoic acid | 2.9 | RI,MS,Co-GC | | | 1993 | 1-Eicosene | 0.6 | RI,MS | | | 2137 | (Z,Z)-9,12-Octadecadienoic acid | 1.2 | RI,MS,Co-GC | | | 2143 | (Z)-9-Octadecenoic acid | 1.8 | RI,MS,Co-GC | | | 2245 | Unidentified component | 3.9 | | | | 2300 | Tricosane | T | RI,MS,Co-GC | | | 2327 | Unidentified component | 2.1 | | | | 2337 | Unidentified component | 2.0 | | | | 2353 | 5-Methyl-5-(4,8,12-trimethyltridecyl)
dihydro-2(3 <i>H</i>)-furanone | Т | RI,MS | | | 2400 | Tetracosane | T | RI,MS,Co-GC | | | 2410 | Eicosanyl acetate | 0.7 | RI,MS | | | 2500 | Pentacosane | 1.0 | RI,MS,Co-GC | | | 2529 | Unidentified component | 2.5 | , , | | | 2554 | Unidentified component | 1.1 | | | | 2600 | Hexacosane | T | RI,MS,Co-GC | | | 2612 | Docosyl acetate | 1.1 | RI,MS | | | 2618 | Unidentified component | 1.3 | · | | | 2700 | Heptacosane | 4.6 | RI,MS,Co-GC | | | 2800 | Octacosane | 1.3 | RI,MS,Co-GC | | | 2813 | Tetracosyl acetate | 0.4 | RI,MS | | | 2862 | Unidentified component | 1.8 | | | | 2900 | Nonacosane | 37.3 | RI,MS,Co-GC | | | 3000 | Triacontane | 1.0 | RI,MS,Co-GC | | | 3100 | Hentriacontane | 9.8 | RI,MS,Co-GC | | | 3141 | α-Tocopherol | T | RI,MS,Co-GC | | | 3157 | Sesamin | 3.5 | RI,MS | | | 3211 | Octacosyl acetate | 1.4 | RI,MS | | | 3255 | Stigmasta-5,22-dien-3β-ol | 1.0 | RI,MS,Co-GC | | | 3304 | Stigmast-5-en-3β-ol | 3.4 | RI,MS,Co-GC | | | 3360 | α-Amyrin | 2.9 | RI,MS | | | | Identified | 77.8 | - 1-, | | | | Unidentified (>1%) | 14.7 | | | | | Total | 92.5 | | | ^a Linear retention indices experimentally determined on the DB-5MS column; ^b values are mean values from three individual analyses; RI – retention indices matching with literature data; MS - mass spectra matching; Co-GC - co-injection with pure reference compound; MS, 70eV, 230 °C: RI 2245, m/z (rel. int.): 133 (12), 105(19), 93(15), 91(20), 79(22), 71(24), 67(15), 55(16), 43(100), 41(16); RI 2327, m/z (rel. int.): 244 (19), 120(15), 105(14), 97(14), 91(29), 77(21), 67(14), 43(100), 41(22), 39(14); RI 2337, m/z (rel. int.): 148(34), 121(25), 120(95), 91(74), 92(40), 77(32), 67(22), 43(100), 41(25), 39(23); RI 2529, m/z (rel. int.): 165(41), 164(71), 150(43), 98(100), 70(50), 69(49), 67(43), 66(77), 55(82), 41(85); RI 2554, m/z (rel. int.): 164(19), 150(100), 98(23), 81(51), 70(28), 66(27), 67(21), 55(37), 43(41), 41(37); RI 2618, m/z (rel. $int.): 152(94), 124(42), 113(100), 98(51), 81(53), 70(47), 68(42), 67(63), 43(54), 41(70); RI\ 2862, \textit{m/z} \ (rel.\ int.): 91(54), 85(49), 77(19), 70(22), 124(42)$ 57(95), 56(20), 55(41), 43(100), 42(20), 41(56); t – Trace amounts (<0.05%). Table 4. The antibacterial and antifungal activity of the Achillea ageratifolia subsp. serbica extracts. | Type of extracts /positive controls | | l parts
iter) | | l parts
tone) | | l parts
acetate) | | escence
acetate) | | oot
acetate) | Doxyci
Flucor | | |-------------------------------------|-------|------------------|------|------------------|------|---------------------|-------|---------------------|-------|-----------------|------------------|-------| | Species | MIC* | MMC* | MIC | MMC | | B. pumilus NTCC 8241 | >5000 | >5000 | 2500 | 5000 | 1250 | 1250 | 2500 | 2500 | 5000 | 5000 | 0.112 | 7.81 | | B. subtilis | 156 | 156 | 39 | 39 | 39 | 78 | 156 | 156 | 39 | 39 | 0.112 | 1.953 | | B. subtilis ATCC 6633 | >5000 | >5000 | 317 | 2500 | 5000 | 5000 | 5000 | >5000 | >5000 | >5000 | 1.953 | 31.25 | | S. aureus | >5000 | >5000 | 39 | 39 | 156 | 317 | 156 | 317 | 78 | 156 | 0.448 | 7.81 | | S. aureus ATCC 25923 | 5000 | 5000 | 156 | 156 | 156 | 317 | 156 | 317 | 78 | 156 | 0.224 | 3.75 | | P. aeruginosa ATCC 27853 | >5000 | >5000 | 2500 | >5000 | 2500 | 5000 | 5000 | >5000 | 5000 | >5000 | 62.5 | 125 | | P. mirabilis ATCC 12453 | 2500 | >5000 | 2500 | 5000 | 2500 | 5000 | 5000 | 5000 | 5000 | 5000 | 15.625 | 62.5 | | E. coli | >5000 | >5000 | 317 | 5000 | 5000 | 5000 | >5000 | >5000 | >5000 | >5000 | 7.81 | 15.63 | | E. coli ATCC 25922 | >5000 | >5000 | 156 | 2500 | 5000 | 5000 | 5000 | >5000 | >5000 | >5000 | 15.625 | 31.25 | | S. enterica | >5000 | >5000 | 317 | 5000 | 5000 | 5000 | 5000 | >5000 | >5000 | >5000 | 15.625 | 31.25 | | R. mucilaginosa | 2500 | 5000 | 625 | 2500 | 156 | 1250 | 625 | 5000 | 156 | 2500 | 62.5 | 1000 | | C. albicans ATCC 10231 | 5000 | 5000 | 625 | 1250 | 625 | 625 | 317 | 2500 | 317 | 1250 | 31.25 | 1000 | ^{*}minimal inhibitory concentration (MIC) and minimal microbiocidal concentration (MMC). The values are given in µg/ml Antibiofilm activity. The results of in vitro antibiofilm activity indicated that the tested extracts of A. ageratifolia subsp. serbica showed no effect on the biofilm formation ability of *S. aureus* ATCC 25923 (BIC₅₀ over 10000 μg/ml). The exception was the ethyl acetate extract from the aerial parts of the plant, with BIC₅₀ at 1770.7 μg/ml, thus marking the highest score in the research of antibiofilm activity. All the tested extracts showed an inhibitory effect on the biofilm formation of *P. aeruginosa* ATCC 27853 (BIC $_{50}$ from 2304.75 µg/ml to 3232.8 µg/ml). Only the ethyl acetate extract of the inflorescence exhibited an effect on the formed biofilm of P. aeruginosa ATCC 27853 (BIC₅₀ at 9170.85 µg/ml). Tetracycline (positive control) showed activity on the biofilm formation of *S. aureus* ATCC 25923 (BIC₅₀ at 250 μg/ml) and on *P. aeruginosa* ATCC 27853 (BIC₅₀ at 156 μg/ml). #### **DISCUSSION** In this study, the chemical composition, antioxidant activity, and antimicrobial properties of different A. ageratifolia subsp. serbica extracts were analyzed for the first time. In addition, the in vitro activity of A. ageratifolia subsp. serbica extracts on the biofilm formation and formed biofilm of S. aureus ATCC 25923 and P. aeruginosa ATCC 27853 was also examined for the first time. The total phenolic and flavonoid content investigated in the methanolic extract of Achillea wilhelmsii C. Koch indicated that the total phenolic content was 37.4 mg-GA/g, while the total flavonoid content was 2.5 mgRU/g (FATHI et al. 2011). Our results indicate that the total phenolic and flavonoid content in the acetone extract from the aerial parts of A. ageratifolia subsp. serbica was higher than the methanolic extract of A. wilhelmsii. Also, the total phenolic content in all the extracts from the aerial parts of A. ageratifolia subsp. serbica was lower than the total phenolic content in the methanolic extracts of the aerial parts of Achillea coarctata Poir., Achillea kotschyi Boiss., and Achillea lycaonica Boiss. et Heldr. (AGAR et al. 2015). The reason for these differences may be found in the solubility of the investigated content or in the different habitats of the investigated species. To our knowledge, there are no available data about the phenolic composition of A. ageratifolia subsp. serbica. The ethyl acetate extract of the best known and most investigated Achillea species, A. millefolium, showed the presence of some common constituents: chlorogenic acid (1.45 mg/g DW), caffeic acid (0.02 mg/g DW), and apigenin (1.03 mg/g DW) (ABOU BAKER 2020). Compared with the A. ageratifolia subsp. serbica extract, the A. millefolium extract possessed a higher content of chlorogenic acid, while the amounts of caffeic acid and apigenin were significantly lower. Afshari et al. (2018) tested methanolic extracts of different Achillea species, e.g. A. santolina L., A. millefolium, A. aucheri Boiss., A. nobilis L., A. filipendulina Lam., and A. pachycephala Rech.f. The common constituents found in all the tested extracts were chlorogenic acid, caffeic acid, luteolin, and apigenin. The ethyl acetate extract of A. ageratifolia subsp. serbica contained a higher amount of chlorogenic acid (0.398 mg/g DW) than the A. santolina (38.22 mg/100 g DW) and A. millefolium extracts (2.84 mg/100 g DW), but lower than the *A. aucheri* (84.56 mg/100 g DW), A. nobilis (105.17 mg/100 g DW), A. filipendulina (124.23 mg/100 g DW), and A. pachycephala (112.88 mg/100 g DW) extracts. The concentration of chlorogenic acid in the acetone extract of A. ageratifolia subsp. serbica (1.249 mg/g DW) was significantly higher compared with all the Achillea species tested in the above-mentioned paper. Caffeic acid was found in significantly lower concentrations in the Achillea species reported by Afshari et al. (2018) compared with the A. ageratifolia subsp. serbica ethyl acetate extract, with the exception of A. millefolium, where it was slightly higher (41.99 mg/100 g DW). The most significant difference among all the tested Achillea species can be observed in the content of the flavonoids apigenin and luteolin. A comparison of the phenolic composition of the A. ageratifolia subsp. serbica ethyl acetate and the acetone extracts from Achillea species examined by Afshari et al. (2018), showed that only the A. filipendulina methanolic extract contained a similar amount of apigenin (151.50 mg/g DW), while all the other species possessed significantly (up to 12-fold) lower amounts. The dominant component found in the A. ageratifolia subsp. serbica ethyl acetate and acetone extracts, luteolin (9.109 and 9.663 mg/g DW, respectively), was significantly higher compared with all the tested Achillea species: A. santolina (6.17 mg/100 g DW), A. millefolium (24.77 mg/100 g DW), A. aucheri (0.53 mg/100 g DW), A. nobilis (25.88 mg/100 g DW), A. filipendulina (2.74 mg/100 g DW), and A. pachycephala (56.11 mg/100 g DW), thus suggesting that A. ageratifolia subsp. serbica may be a significant source of flavonoids. The analysis of A. ageratifolia subsp. serbica could be important in understanding its potential biological activities and possible pharmaceutical usage. The *n*-alkane distribution followed the usual pattern found in higher plants (tracheophytes) – of high carbon preference index (CPI) with odd-numbered carbon dominance centered at n- C_{29} of a Gaussian-like curve (RADULOVIĆ et al. 2012). Further, the presence of steroid compounds with a stigmastane nucleus and of triterpenes, widespread in terrestrial plants, was also detected (Hernández Vázquez et al. 2012; Valтоva et al. 2016). FATHI et al. (2011) investigated and demonstrated the antioxidant activity of the methanolic extract of A. wilhelmsii (IC₅₀ = $58.9 \pm 2.7 \mu g/ml$). AGAR et al. (2015) researched the antioxidant activity of methanolic extracts of A. coarctata, A. kotschyi, and A. lycaonica grown in Turkey, suggesting the strong radical scavenging activity of this plant species. In the aforementioned study by Afshari et al. (2018), the IC_{50} values in the samples ranged from 365.5 μg/ml (A. pachycephala) to 854.1 μg/ml (A. millefolium). Comparing the activities of the investigated plant extracts, it can be seen that the extracts of A. ageratifolia subsp. serbica showed moderate antioxidant activity. However, some extracts of A. ageratifolia subsp. serbica showed higher antioxidant activity than the methanolic extract of A. millefo*lium* from the study by Afshari *et al.* (2018). Some researchers have shown that extracts from the aerial parts of the following plants: A. clavennae, A. holosericea, A. lingulata and A. millefolium, exhibit a wide spectrum of antimicrobial activity related to certain bacteria (S. aureus, E. coli, K. pneumoniae, P. aeruginosa and S. enteritidis) and fungi (Aspergillus niger and C. albicans) (Stojanović et al. 2005; Si et al. 2006). Moham-MADI-SICHANI et al. (2011) demonstated the inhibitory effects of the methanolic extract from the aerial parts of A. wilhelmsii on the growth of S. aureus, B. cereus, E. coli and P. aeroginosa (MIC values from 6.25 to 25 mg/ml). FIERASCU et al. (2015) showed the very important in vitro antifungal activity of the hydroalcoholic extract of A. millefolium, which is in correlation with the results from A. ageratifolia subsp. serbica. It is known that plant extracts can inhibit the biofilm formation of P. aeruginosa ATCC 27853 and S. aureus ATCC 25923 (Perumal & Mahmud 2013; Muruzović et al. 2016). There are some data about the effects of Achillea ageratum L. essential oil on the biofilm formation of C. albicans (BIC 60% was 9 µg/ml) (VAVALA et al. 2009). However, the antibiofilm activity of extracts of A. ageratifolia subsp. serbica has not been investigated to date. ### **CONCLUSION** Based on the results obtained in this research, it may be concluded that the tested extracts of A. ageratifolia subsp. serbica are important sources of specialized metabolites, especially chlorogenic acid, myricetin, apigenin and luteolin. Thirty-two compounds were identified using GC-FID and GC-MS analyses. However, the antioxidant activity of the tested extracts was moderate. The antibacterial activity of the tested extracts was shown against *B*. subtilis and S. aureus, and the antifungal activity of the extracts was significant. The tested extracts showed moderate antibiofilm activity on the biofilm formation ability. Based on the results, it could be concluded that the tested extracts of A. ageratifolia subsp. serbica may be a significant source of flavonoids, which is important due to their high biological importance and proven health benefits. Also, the marked extracts showed a potential for application as biofungicides. Since the collection of this species from natural habitats is not allowed in our country, collection and potential usage should be based on plants cultivated in nurseries, and not on those collected from the wild. The additional effects of A. ageratifolia subsp. serbica extracts and their fine mechanisms of action will be disclosed in future studies. Acknowledgements - This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Agreement No. 451-03-9/2021-14/200122). A permit for the collection of plant species was issued by the Ministry of Environmental Protection (Permit for the collection of protected plant species for scientific research purposes No. 353-01-394/2017/17). #### REFERENCES - ABOU BAKER DH. 2020. Achillea millefolium L. ethyl acetate fraction induces apoptosis and cell cycle arrest in human cervical cancer (HeLa) cells. Annals of Agricultural Sciences 65: 42-48. - Adams RP. 2007. Identification of essential oil components by gas chromatography/mass spectrometry, 4th ed. Allured Publishing Corp., Carol Stream, IL. - Afshari M, Rahimmalek M & Miroliaei M. 2018. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chemistry & Biodiversity 15: e1800075. - AGAR OT, DIKMEN M, OZTURK N, YILMAZ MA, TEMEL H & Turkmenoglu FP. 2015. Comparative studies on phenolic composition, antioxidant, wound healing and cytotoxic activities of selected Achillea L. species growing in Turkey. *Molecules* **20**: 17976–18000. - Chaieb K, Kouidhi B, Jrah H, Mahdouani K & BAKHROUF A. 2011. Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary and Alternative Medicine 11: 29. - FATHI H, AGHAEE L & EBRAHIMZADEH MA. 2011. Antioxidant activity and phenolic contents of Achillea wilhemsii. Pharmacology Online 2: 942-949. - FIERASCU I, UNGUREANU C, AVRAMESCU SM, FIERASCU RC, ORTAN A, SOARE LC & PAUNESCU A. 2015. In vitro antioxidant and antifungal properties of Achillea millefolium L. Romanian Biotechnological Letters 20: 10626-10636. - GAJIĆ M. 1974. Achillea L. In: Josifović M (ed.), Flora SR Srbije 7, pp. 90–110, Serbian Academy of Sciences and Arts, Belgrade. - Georgieva L, Gadjalova A, Mihaylova D & Pavlov A. 2015. Achillea millefolium L. - phytochemical profile and in vitro antioxidant activity. International Food Research Journal 22: 1347-1352. - HERNÁNDEZ VÁZQUEZ L, PALAZON J & NAVARRO-Ocaña A. 2012. The pentacyclic triterpenes α , β-amyrins: A review of sources and biological activities. Phytochemicals, Venketeshwer Rao, Intech Open. - Mihailović NR, Mihailović VB, Ćirić AR, Srećković NZ, Cvijović MR & Joksović LG. - 2019. Analysis of wild raspberries (Rubus idaeus L.): Optimization of the ultrasonic-assisted extraction of phenolics and a new insight in phenolics bioaccessibility. Plant Foods and Human Nutrition 74: 399-404. - Mladenović MZ & Radulović NS. 2017. The essential oil of Achillea ageratifolia (Sm.) Boiss. var. serbica (Nyman) Heimerl (Asteraceae) revisited: the stereochemical nomenclature issues, structural elucidation and synthesis of (new) sabinyl esters. Flavour and Fragrance Journal 32: 5-23. - Mohammadhosseini M, Sarker SD & Akbarzadeh A. 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology **199**: 257-315. - Mohammadi-Sichani M, Amjad L & Mohammadi-KAMALABADI M. 2011. Antibacterial activity of methanol extract and essential oil of Achillea wilhelmsii against pathogenic bacteria. Zahedan *Journal of Research in Medical Sciences* **13**: 9–14. - Muruzović M, Mladenović K, Stefanović O, Vasić S & Čomić L. 2016. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial and antibiofilm activity. Journal of Food and Drug Analysis 24: 539-547. - O'Toole G, Kaplan HB & Kolter R. 2000. Biofilm formation as microbial development. Annual Review of Microbiology **54**: 49–79. - PERUMAL S & MAHMUD R. 2013. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta L. against clinical isolates and standard strains. BMC Complementary and Alternative Medicine 13: 346. - QUETTIER-DELEU C, GRESSIER B, VASSEUR J, DINE T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F & Trotin F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology 72: 35-42. - RADULOVIĆ N, DENIĆ M, STOJANOVIĆ-RADIĆ Z & SKROPETA D. 2012. Fatty and volatile oils of the gypsywort Lycopus europaeus L. and the Gaussianlike distribution of its Wax Alkanes. Journal of the American Oil Chemists' Society 89: 2165-2185. - RICHARDSON IB. 1976. Achillea L. In: TUTIN TG, HEYWOOD VH, BURGES NA, MOORE DM, VALENTINE DH, Walters SM & Webb DA (eds.), Flora Europaea 4, pp. 159–165, University Press, Cambridge. - Saeidnia S, Gohari AR, Mokhber-Dezfuli N & Kıuсні F. 2011. A review on phytochemistry and medicinal properties of the genus Achillea. DARU Journal of Pharmaceutical Sciences 19: 173-186. - SARKER SD, NAHAR L & KUMARASAMY Y. 2007. Microtitre plate-based antibacterial assay - incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods **42**: 321-324. - SGRS. 2010-2016. Pravilnik o proglašenju i zaštiti strogo zaštićenih i zaštićenih divljih vrsta biljaka, životinja i gljiva. Službeni Glasnik RS 5/2010, 47/2011, 32/2016, 98/2016. - SHAH R & PEETHAMBARAN B. 2017. Anti-inflammatory and anti-microbial properties of Achillea millefolium in acne treatment. In: Chatterjee S, JUNGRAITHMAYR W & BAGCHI D (eds.), Immunity and inflammation in health and disease: emerging roles of nutraceuticals and functional foods in immune support, pp. 241–248, Academic Press. - Si XT, Zhang ML, Shi QW & Kiyota H. 2006. Chemical constituents of the plants in the genus Achillea. Chemistry and Biodiversity 3: 1163-1180. - SIMONETTI G. 1990. Simon & Schuster's Guide to Herbs and Spices. Simon & Schuster, Inc. New York. - Stojanović G, Radulović N, Hashimoto T & PALIĆ R. 2005. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. Journal of Ethnopharmacology 101: 185-190. - TAKAO T, WATANABE N, YAGI I & SAKATA K. 1994. A simple screening method for antioxidant and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Bioscience, Biotechnology, and Biochemistry 58: 1780-1783. - TUBEROSO CIG, MONTORO P, PIACENTE S, CORONA G, DEIANA M, DESSI MA & CABRAS P. 2009. Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All. Journal of Pharmaceutical and Biomedical Analysis **50**: 440-448. - VALANT-VETSCHERA KM & WOLLENWEBER E. 2001. Exudate flavonoid aglycones in the alpine species of Achillea sect. Ptarmica: Chemosystematics of A. moschata and related species (Compositae-Anthemideae). Biochemical Systematics and Ecology **29**: 149-59. - VALITOVA JN, SULKARNAYEVA AG & MINIBAYEVA FV. 2016. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry (Moscow) 81: 819-834. - VAN DEN DOOL H & KRATZ PD. 1963. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. Journal of Chromatography A 11: 463-471. - Vasić SM, Stefanović OD, Ličina BZ, Radojević ID & Čoмić LR. 2012. Biological activities of extracts from cultivated Granadilla Passiflora alata. Excli Journal 11: 208-218. - VAVALA E, RAGNO R, SIVRIC S, SARTORELLI G, FILIPPI A, PALAMARA AT & ANGIOLELLA L. 2009. Antimycotic activity of Achillea ageratum L. essential oil. International Journal of Essential Oil Therapy 3: 101-105. - WOOTTON-BEARD PC, MORAN A & RYAN L. 2011. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Research International 44: 217-224. # Fitohemijski sastav i biološka aktivnost različitih vrsta ektrakata Achillea ageratifolia subsp. serbica REZIME Ivana D. Radojević, Mirjana Ž. Grujović, Ljiljana R. Čomić, Milan S. Dekić, Gorica T. Djelić i Nevena R. Mihailović Achillea ageratifolia subsp. serbica je endemit sa područja Balkana koji je slabo istražen i gotovo da nema podataka o potencijalnoj primeni ove biljke. Svrha ove studije bila je istraživanje fitohemijskog sastava kao i antioksidativne, antimikrobne i antibiofilm aktivnosti vodenog, acetonskog i etil acetatnog ekstrakta spomenute biljke. Sastav fenola i flavonoida je utvrđen korišćenjem HPLC-PDA analize, dok je hemijski sastav etil acetatnog ekstrakta nadzemnog dela biljke istražen korišćenjem GC i GC-MS. Ispitivana je antioksidativna i antimikrobna aktivnost, kao i inhibicija inhibicija sposobnosti formiranja i uticaj na formirani biofilm Staphilococcus aureus ATCC 25923 i Pseudomonas aeruginosa ATCC 27853.Ukupni sadržaj fenola kretao se u rasponu od 18,61 mgGAE/g ekstrakta do 43,78 mgGAE/g ekstrakta. Ukupni sadržaj flavonoida kretao se u rasponu od 10,79 mgRUE/g ekstrakta do 34,02 mgRUE/g ekstrakta. Acetonski i etil acetatatni ekstrakti nadzemnog dela biljke sadrže hlorogenu kiselinu, miricetin, apigenin i luteolin. Analiza isparljivih sekundarnih metabolita etil acetatnog ekstrakta nadzemnog dela biljke omogućila je identifikaciju trideset i dva sastojka. Najbolju antioksidativnu aktivnost pokazao je vodeni ekstrakt nadzemnog dela biljke (IC $_{50}$ = 641,06 µg/ml) i etil acetatatni ekstrakt korena (IC $_{50}$ = 675,33 µg/ml). Bacillus subtilis i S. aureus su pokazali osetljivost na testirane ekstrakte, dok je antifungalna aktivnost svih ekstrakata bila značajna. Ekstrakti su pokazali umeren inhibitorni efekat na sposobnost formiranja biofilma P. aeruginosa ATCC 27853, dok je samo etil acetatni ekstrakt biljne cvasti pokazao uticaj na formirani biofilm P. aeruginosa ATCC 27853. Testirani ekstrakti pokazali su potencijal za dalje ispitivanje i potencijalnu primenu kao biofungicidi. Ključne reči: antimikrobna aktivnost, antibiofilm aktivnost, antioksidativno delovanje, fenoli, flavonoidi, Asteraceae